These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 19301104)

  • 21. Electrospinning of novel biodegradable poly(ester urethane)s and poly(ester urethane urea)s for soft tissue-engineering applications.
    Caracciolo PC; Thomas V; Vohra YK; Buffa F; Abraham GA
    J Mater Sci Mater Med; 2009 Oct; 20(10):2129-37. PubMed ID: 19434481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes.
    Gorna K; Gogolewski S
    J Biomed Mater Res A; 2003 Dec; 67(3):813-27. PubMed ID: 14613229
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Injectable biodegradable polyurethane scaffolds with release of platelet-derived growth factor for tissue repair and regeneration.
    Hafeman AE; Li B; Yoshii T; Zienkiewicz K; Davidson JM; Guelcher SA
    Pharm Res; 2008 Oct; 25(10):2387-99. PubMed ID: 18516665
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The use of long-chain plant polyprenols as a means to modify the biological properties of new biodegradable polyurethane scaffolds for tissue engineering. A pilot study.
    Walinska K; Iwan A; Gorna K; Gogolewski S
    J Mater Sci Mater Med; 2008 Jan; 19(1):129-35. PubMed ID: 17587148
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction of skeletal myoblast-based polyurethane scaffolds for myocardial repair.
    Siepe M; Giraud MN; Liljensten E; Nydegger U; Menasche P; Carrel T; Tevaearai HT
    Artif Organs; 2007 Jun; 31(6):425-33. PubMed ID: 17537054
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradable polyurethane cancellous bone graft substitutes in the treatment of iliac crest defects.
    Gogolewski S; Gorna K
    J Biomed Mater Res A; 2007 Jan; 80(1):94-101. PubMed ID: 16960827
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biodegradable elastomeric polyurethane membranes as chondrocyte carriers for cartilage repair.
    Chia SL; Gorna K; Gogolewski S; Alini M
    Tissue Eng; 2006 Jul; 12(7):1945-53. PubMed ID: 16889524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradable porous polyurethane scaffolds for tissue repair and regeneration.
    Gorna K; Gogolewski S
    J Biomed Mater Res A; 2006 Oct; 79(1):128-38. PubMed ID: 16779769
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and in vitro biocompatibility of injectable polyurethane foam scaffolds.
    Guelcher SA; Patel V; Gallagher KM; Connolly S; Didier JE; Doctor JS; Hollinger JO
    Tissue Eng; 2006 May; 12(5):1247-59. PubMed ID: 16771638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regeneration of bicortical defects in the iliac crest of estrogen-deficient sheep, using new biodegradable polyurethane bone graft substitutes.
    Gogolewski S; Gorna K; Turner AS
    J Biomed Mater Res A; 2006 Jun; 77(4):802-10. PubMed ID: 16575914
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fibrin-polyurethane composites for articular cartilage tissue engineering: a preliminary analysis.
    Lee CR; Grad S; Gorna K; Gogolewski S; Goessl A; Alini M
    Tissue Eng; 2005; 11(9-10):1562-73. PubMed ID: 16259610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of tissue ingrowth rates in polyurethane scaffolds for tissue engineering.
    Ramrattan NN; Heijkants RG; van Tienen TG; Schouten AJ; Veth RP; Buma P
    Tissue Eng; 2005; 11(7-8):1212-23. PubMed ID: 16144457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications.
    Guan J; Fujimoto KL; Sacks MS; Wagner WR
    Biomaterials; 2005 Jun; 26(18):3961-71. PubMed ID: 15626443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silk fibroin-coated three-dimensional polyurethane scaffolds for tissue engineering: interactions with normal human fibroblasts.
    Dal Prà I; Petrini P; Chiarini A; Bozzini S; Farè S; Armato U
    Tissue Eng; 2003 Dec; 9(6):1113-21. PubMed ID: 14670099
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering porous polyurethane scaffolds by photografting polymerization of methacrylic acid for improved endothelial cell compatibility.
    Zhu Y; Gao C; Guan J; Shen J
    J Biomed Mater Res A; 2003 Dec; 67(4):1367-73. PubMed ID: 14624524
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endothelium regeneration on luminal surface of polyurethane vascular scaffold modified with diamine and covalently grafted with gelatin.
    Zhu Y; Gao C; He T; Shen J
    Biomaterials; 2004 Feb; 25(3):423-30. PubMed ID: 14585690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A biodegradable polyurethane-ascorbic acid scaffold for bone tissue engineering.
    Zhang J; Doll BA; Beckman EJ; Hollinger JO
    J Biomed Mater Res A; 2003 Nov; 67(2):389-400. PubMed ID: 14566779
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair.
    McDevitt TC; Woodhouse KA; Hauschka SD; Murry CE; Stayton PS
    J Biomed Mater Res A; 2003 Sep; 66(3):586-95. PubMed ID: 12918042
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.