BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 19301274)

  • 1. Design of a multiphase osteochondral scaffold. II. Fabrication of a mineralized collagen-glycosaminoglycan scaffold.
    Harley BA; Lynn AK; Wissner-Gross Z; Bonfield W; Yannas IV; Gibson LJ
    J Biomed Mater Res A; 2010 Mar; 92(3):1066-77. PubMed ID: 19301274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a multiphase osteochondral scaffold. I. Control of chemical composition.
    Lynn AK; Best SM; Cameron RE; Harley BA; Yannas IV; Gibson LJ; Bonfield W
    J Biomed Mater Res A; 2010 Mar; 92(3):1057-65. PubMed ID: 19301264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a multiphase osteochondral scaffold III: Fabrication of layered scaffolds with continuous interfaces.
    Harley BA; Lynn AK; Wissner-Gross Z; Bonfield W; Yannas IV; Gibson LJ
    J Biomed Mater Res A; 2010 Mar; 92(3):1078-93. PubMed ID: 19301263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density-property relationships in mineralized collagen-glycosaminoglycan scaffolds.
    Kanungo BP; Gibson LJ
    Acta Biomater; 2009 May; 5(4):1006-18. PubMed ID: 19121982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of mineralized collagen-glycosaminoglycan scaffolds for bone regeneration.
    Kanungo BP; Silva E; Van Vliet K; Gibson LJ
    Acta Biomater; 2008 May; 4(3):490-503. PubMed ID: 18294943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density-property relationships in collagen-glycosaminoglycan scaffolds.
    Kanungo BP; Gibson LJ
    Acta Biomater; 2010 Feb; 6(2):344-53. PubMed ID: 19770077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical characterization of collagen-glycosaminoglycan scaffolds.
    Harley BA; Leung JH; Silva EC; Gibson LJ
    Acta Biomater; 2007 Jul; 3(4):463-74. PubMed ID: 17349829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel freeze-drying methods to produce a range of collagen-glycosaminoglycan scaffolds with tailored mean pore sizes.
    Haugh MG; Murphy CM; O'Brien FJ
    Tissue Eng Part C Methods; 2010 Oct; 16(5):887-94. PubMed ID: 19903089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering.
    Murphy CM; Haugh MG; O'Brien FJ
    Biomaterials; 2010 Jan; 31(3):461-6. PubMed ID: 19819008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold.
    Lee JE; Kim KE; Kwon IC; Ahn HJ; Lee SH; Cho H; Kim HJ; Seong SC; Lee MC
    Biomaterials; 2004 Aug; 25(18):4163-73. PubMed ID: 15046906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Fabrication and properties of a composite chitosan/type II collagen scaffold for tissue engineering cartilage].
    Shi D; Cai D; Zhou C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Apr; 19(4):278-82. PubMed ID: 15921318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabricating tubular scaffolds with a radial pore size gradient by a spinning technique.
    Harley BA; Hastings AZ; Yannas IV; Sannino A
    Biomaterials; 2006 Feb; 27(6):866-74. PubMed ID: 16118016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of bone ingrowth into porous biomaterials using MICRO-CT.
    Jones AC; Arns CH; Sheppard AP; Hutmacher DW; Milthorpe BK; Knackstedt MA
    Biomaterials; 2007 May; 28(15):2491-504. PubMed ID: 17335896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chondrogenesis using mesenchymal stem cells and PCL scaffolds.
    Kim HJ; Lee JH; Im GI
    J Biomed Mater Res A; 2010 Feb; 92(2):659-66. PubMed ID: 19235210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of pore size on cell adhesion in collagen-GAG scaffolds.
    O'Brien FJ; Harley BA; Yannas IV; Gibson LJ
    Biomaterials; 2005 Feb; 26(4):433-41. PubMed ID: 15275817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering.
    Tierney CM; Haugh MG; Liedl J; Mulcahy F; Hayes B; O'Brien FJ
    J Mech Behav Biomed Mater; 2009 Apr; 2(2):202-9. PubMed ID: 19627824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.
    Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA
    Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds.
    Haugh MG; Murphy CM; McKiernan RC; Altenbuchner C; O'Brien FJ
    Tissue Eng Part A; 2011 May; 17(9-10):1201-8. PubMed ID: 21155630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered cellular response to scaffold architecture in a rabbit trephine defect.
    Simon JL; Roy TD; Parsons JR; Rekow ED; Thompson VP; Kemnitzer J; Ricci JL
    J Biomed Mater Res A; 2003 Aug; 66(2):275-82. PubMed ID: 12888997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Fabrication of collagen/sodium hyaluronate scaffold and its biological characteristics for cartilage tissue engineering].
    Wu W; Mao T; Feng X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Apr; 21(4):401-5. PubMed ID: 17546888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.