These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19301836)

  • 1. Mechanism of Cdc25B phosphatase with the small molecule substrate p-nitrophenyl phosphate from QM/MM-MFEP calculations.
    Parks JM; Hu H; Rudolph J; Yang W
    J Phys Chem B; 2009 Apr; 113(15):5217-24. PubMed ID: 19301836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-specific Cdc25B phosphatase: in search of the catalytic acid.
    Chen W; Wilborn M; Rudolph J
    Biochemistry; 2000 Sep; 39(35):10781-9. PubMed ID: 10978163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The catalytic acid in the dephosphorylation of the Cdk2-pTpY/CycA protein complex by Cdc25B phosphatase.
    Arantes GM
    J Phys Chem B; 2008 Nov; 112(47):15244-7. PubMed ID: 18980372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature dependence of binding and catalysis for the Cdc25B phosphatase.
    Sohn J; Rudolph J
    Biophys Chem; 2007 Feb; 125(2-3):549-55. PubMed ID: 17174465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic mechanism of Cdc25.
    Rudolph J
    Biochemistry; 2002 Dec; 41(49):14613-23. PubMed ID: 12463761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic studies of protein tyrosine phosphatases YopH and Cdc25A with m-nitrobenzyl phosphate.
    McCain DF; Grzyska PK; Wu L; Hengge AC; Zhang ZY
    Biochemistry; 2004 Jun; 43(25):8256-64. PubMed ID: 15209522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterologous expression and catalytic properties of the C-terminal domain of starfish cdc25 dual-specificity phosphatase, a cell cycle regulator.
    Deshimaru S; Miyake Y; Ohmiya T; Tatsu Y; Endo Y; Yumoto N; Toraya T
    J Biochem; 2002 May; 131(5):705-12. PubMed ID: 11983078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic analysis of the catalytic domain of human cdc25B.
    Gottlin EB; Xu X; Epstein DM; Burke SP; Eckstein JW; Ballou DP; Dixon JE
    J Biol Chem; 1996 Nov; 271(44):27445-9. PubMed ID: 8910325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and structural studies of specific protein-protein interactions in substrate catalysis by Cdc25B phosphatase.
    Sohn J; Buhrman G; Rudolph J
    Biochemistry; 2007 Jan; 46(3):807-18. PubMed ID: 17223702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the catalytic subunit of Cdc25B required for G2/M phase transition of the cell cycle.
    Reynolds RA; Yem AW; Wolfe CL; Deibel MR; Chidester CG; Watenpaugh KD
    J Mol Biol; 1999 Oct; 293(3):559-68. PubMed ID: 10543950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of CDC25B phosphatase through disruption of protein-protein interaction.
    Lund G; Dudkin S; Borkin D; Ni W; Grembecka J; Cierpicki T
    ACS Chem Biol; 2015 Feb; 10(2):390-4. PubMed ID: 25423142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The C-terminal tail of the dual-specificity Cdc25B phosphatase mediates modular substrate recognition.
    Wilborn M; Free S; Ban A; Rudolph J
    Biochemistry; 2001 Nov; 40(47):14200-6. PubMed ID: 11714273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental validation of the docking orientation of Cdc25 with its Cdk2-CycA protein substrate.
    Sohn J; Parks JM; Buhrman G; Brown P; Kristjánsdóttir K; Safi A; Edelsbrunner H; Yang W; Rudolph J
    Biochemistry; 2005 Dec; 44(50):16563-73. PubMed ID: 16342947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adventitious arsenate reductase activity of the catalytic domain of the human Cdc25B and Cdc25C phosphatases.
    Bhattacharjee H; Sheng J; Ajees AA; Mukhopadhyay R; Rosen BP
    Biochemistry; 2010 Feb; 49(4):802-9. PubMed ID: 20025242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural mechanism of oxidative regulation of the phosphatase Cdc25B via an intramolecular disulfide bond.
    Buhrman G; Parker B; Sohn J; Rudolph J; Mattos C
    Biochemistry; 2005 Apr; 44(14):5307-16. PubMed ID: 15807524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remote hot spots mediate protein substrate recognition for the Cdc25 phosphatase.
    Sohn J; Kristjánsdóttir K; Safi A; Parker B; Kiburz B; Rudolph J
    Proc Natl Acad Sci U S A; 2004 Nov; 101(47):16437-41. PubMed ID: 15534213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The design of novel inhibitors for treating cancer by targeting CDC25B through disruption of CDC25B-CDK2/Cyclin A interaction using computational approaches.
    Li HL; Ma Y; Ma Y; Li Y; Chen XB; Dong WL; Wang RL
    Oncotarget; 2017 May; 8(20):33225-33240. PubMed ID: 28402259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificity of natural and artificial substrates for human Cdc25A.
    Rudolph J; Epstein DM; Parker L; Eckstein J
    Anal Biochem; 2001 Feb; 289(1):43-51. PubMed ID: 11161293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A reanalysis of protein tyrosine phosphatases inhibitory studies using the unnatural substrate analogue p-nitrophenyl phosphate.
    Walsh R
    Anal Biochem; 2019 May; 572():58-62. PubMed ID: 30844368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of a low-molecular weight protein tyrosine phosphatase from Saccharomyces cerevisiae and its complex with the substrate p-nitrophenyl phosphate.
    Wang S; Tabernero L; Zhang M; Harms E; Van Etten RL; Stauffacher CV
    Biochemistry; 2000 Feb; 39(8):1903-14. PubMed ID: 10684639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.