These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 19301894)

  • 21. Energy transfer of highly vibrationally excited 2-methylnaphthalene: Methylation effects.
    Hsu HC; Liu CL; Hsu YC; Ni CK
    J Chem Phys; 2008 Jul; 129(4):044301. PubMed ID: 18681640
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy transfer between polyatomic molecules. 3. Energy transfer quantities and probability density functions in self-collisions of benzene, toluene, p-xylene and azulene.
    Bernshtein V; Oref I
    J Phys Chem A; 2006 Jul; 110(27):8477-87. PubMed ID: 16821831
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy transfer of highly vibrationally excited azulene: collisions between azulene and krypton.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2006 Feb; 124(5):054302. PubMed ID: 16468864
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quenching of highly vibrationally excited pyrimidine by collisions with CO2.
    Johnson JA; Duffin AM; Hom BJ; Jackson KE; Sevy ET
    J Chem Phys; 2008 Feb; 128(5):054304. PubMed ID: 18266447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reaction of HOD+ with NO2: effects of OD and OH stretching, bending, and collision energy on reactions on the singlet and triplet potential surfaces.
    Boyle JM; Bell DM; Anderson SL; Viggiano AA
    J Phys Chem A; 2011 Feb; 115(7):1172-85. PubMed ID: 21291191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy transfer of highly vibrationally excited azulene. III. Collisions between azulene and argon.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2006 Nov; 125(20):204309. PubMed ID: 17144702
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alkylation effects on the energy transfer of highly vibrationally excited naphthalene.
    Hsu HC; Tsai MT; Dyakov YA; Ni CK
    Chem Asian J; 2011 Nov; 6(11):3048-53. PubMed ID: 21780292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Vibrational and rotational excitation of CO2 in the collisional quenching of H2(v = 1)].
    Zhang WJ; Feng L; Li JL; Liu J; Dai K; Shen YF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jun; 34(6):1492-6. PubMed ID: 25358152
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy transfer of highly vibrationally excited naphthalene. I. Translational collision energy dependence.
    Liu CL; Hsu HC; Hsu YC; Ni CK
    J Chem Phys; 2007 Sep; 127(10):104311. PubMed ID: 17867751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Time resolved distribution of excitation energy in collisions of vibrationally excited KH with CO2].
    Feng L; Liu J; Wang SY; Zhang WJ; Li JL; Dai K; Shen YF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jul; 34(7):1758-62. PubMed ID: 25269275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. H+ versus D+) transfer from HOD+ to N2: mode- and bond-selective effects.
    Bell DM; Boyle JM; Anderson SL
    J Chem Phys; 2011 Jul; 135(4):044305. PubMed ID: 21806117
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of translational and vibrational excitation on the reaction of HOD+ with C2H2 and C2D2: mode- and bond-specific effects in exoergic proton transfer.
    Bell DM; Howder CR; Anderson SL
    J Phys Chem A; 2014 Sep; 118(37):8360-72. PubMed ID: 24678576
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Absorption spectrometric study of molecular complex formation between [60]fullerene and a series of methylated pyridines.
    Bhattacharya S; Banerjee M; Mukherjee AK
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Oct; 58(12):2563-9. PubMed ID: 12396038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonequilibrium molecular dynamics simulations of vibrational energy relaxation of HOD in D2O.
    Kandratsenka A; Schroeder J; Schwarzer D; Vikhrenko VS
    J Chem Phys; 2009 May; 130(17):174507. PubMed ID: 19425790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy transfer of highly vibrationally excited naphthalene: collisions with CHF3, CF4, and Kr.
    Chen Hsu H; Tsai MT; Dyakov YA; Ni CK
    J Chem Phys; 2011 Aug; 135(5):054311. PubMed ID: 21823704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. State-resolved rotational distributions and collision dynamics of CO molecules made in a tunable optical centrifuge.
    Michael TJ; Ogden HM; Mullin AS
    J Chem Phys; 2021 Apr; 154(13):134307. PubMed ID: 33832253
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Collisional Relaxation of Highly Vibrationally Excited Acetylene Mediated by the Vinylidene Isomer.
    Smith JM; Nikow M; Wilhelm MJ; Dai HL
    J Phys Chem A; 2023 Oct; 127(42):8782-8793. PubMed ID: 37846886
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Collision Frequency for Energy Transfer in Unimolecular Reactions.
    Matsugi A
    J Phys Chem A; 2018 Mar; 122(8):1972-1985. PubMed ID: 29402089
    [TBL] [Abstract][Full Text] [Related]  

  • 39. State-to-state time-of-flight measurements of NO scattering from Au(111): direct observation of translation-to-vibration coupling in electronically nonadiabatic energy transfer.
    Golibrzuch K; Shirhatti PR; Altschäffel J; Rahinov I; Auerbach DJ; Wodtke AM; Bartels C
    J Phys Chem A; 2013 Sep; 117(36):8750-60. PubMed ID: 23808714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of collisional and vibrational velocity on proton and deuteron transfer in the reaction of HOD+ with CO.
    Bell DM; Anderson SL
    J Phys Chem A; 2013 Feb; 117(6):1083-93. PubMed ID: 22788802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.