BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 19301956)

  • 21. Intravenously administered BMSCs reduce neuronal apoptosis and promote neuronal proliferation through the release of VEGF after stroke in rats.
    Deng YB; Ye WB; Hu ZZ; Yan Y; Wang Y; Takon BF; Zhou GQ; Zhou YF
    Neurol Res; 2010 Mar; 32(2):148-56. PubMed ID: 19473555
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat.
    Chen J; Li Y; Katakowski M; Chen X; Wang L; Lu D; Lu M; Gautam SC; Chopp M
    J Neurosci Res; 2003 Sep; 73(6):778-86. PubMed ID: 12949903
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Committed neural progenitor cells derived from genetically modified bone marrow stromal cells ameliorate deficits in a rat model of stroke.
    Hayase M; Kitada M; Wakao S; Itokazu Y; Nozaki K; Hashimoto N; Takagi Y; Dezawa M
    J Cereb Blood Flow Metab; 2009 Aug; 29(8):1409-20. PubMed ID: 19436312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bone marrow stromal cells induce BMP2/4 production in oxygen-glucose-deprived astrocytes, which promotes an astrocytic phenotype in adult subventricular progenitor cells.
    Xin H; Li Y; Chen X; Chopp M
    J Neurosci Res; 2006 Jun; 83(8):1485-93. PubMed ID: 16528751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. miR-145 Regulates Diabetes-Bone Marrow Stromal Cell-Induced Neurorestorative Effects in Diabetes Stroke Rats.
    Cui C; Ye X; Chopp M; Venkat P; Zacharek A; Yan T; Ning R; Yu P; Cui G; Chen J
    Stem Cells Transl Med; 2016 Dec; 5(12):1656-1667. PubMed ID: 27460851
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intranasal delivery of bone marrow mesenchymal stem cells improved neurovascular regeneration and rescued neuropsychiatric deficits after neonatal stroke in rats.
    Wei ZZ; Gu X; Ferdinand A; Lee JH; Ji X; Ji XM; Yu SP; Wei L
    Cell Transplant; 2015; 24(3):391-402. PubMed ID: 25647744
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Restoration of intracortical and thalamocortical circuits after transplantation of bone marrow mesenchymal stem cells into the ischemic brain of mice.
    Song M; Mohamad O; Gu X; Wei L; Yu SP
    Cell Transplant; 2013; 22(11):2001-15. PubMed ID: 23069268
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transplantation of bone marrow stromal cells containing the neurturin gene in rat model of Parkinson's disease.
    Ye M; Wang XJ; Zhang YH; Lu GQ; Liang L; Xu JY; Chen SD
    Brain Res; 2007 Apr; 1142():206-16. PubMed ID: 17336273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transplantation of Flk-1+ human bone marrow-derived mesenchymal stem cells promotes angiogenesis and neurogenesis after cerebral ischemia in rats.
    Bao X; Feng M; Wei J; Han Q; Zhao H; Li G; Zhu Z; Xing H; An Y; Qin C; Zhao RC; Wang R
    Eur J Neurosci; 2011 Jul; 34(1):87-98. PubMed ID: 21692879
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protective effects of MCI-186 on transplantation of bone marrow stromal cells in rat ischemic stroke model.
    Shen LH; Ye M; Ding XS; Han Q; Zhang C; Liu XF; Huang H; Wu EB; Huang HF; Gu XS
    Neuroscience; 2012 Oct; 223():315-24. PubMed ID: 22885235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Promoting therapeutic angiogenesis of focal cerebral ischemia using thrombospondin-4 (TSP4) gene-modified bone marrow stromal cells (BMSCs) in a rat model.
    Zhang Q; Zhou M; Wu X; Li Z; Liu B; Gao W; Yue J; Liu T
    J Transl Med; 2019 Apr; 17(1):111. PubMed ID: 30947736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transplantation of neural stem cells expressing hypoxia-inducible factor-1alpha (HIF-1alpha) improves behavioral recovery in a rat stroke model.
    Wu W; Chen X; Hu C; Li J; Yu Z; Cai W
    J Clin Neurosci; 2010 Jan; 17(1):92-5. PubMed ID: 19913430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells.
    Zhang J; Li Y; Chen J; Yang M; Katakowski M; Lu M; Chopp M
    Brain Res; 2004 Dec; 1030(1):19-27. PubMed ID: 15567334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Near-infrared fluorescence labeling allows noninvasive tracking of bone marrow stromal cells transplanted into rat infarct brain.
    Sugiyama T; Kuroda S; Osanai T; Shichinohe H; Kuge Y; Ito M; Kawabori M; Iwasaki Y
    Neurosurgery; 2011 Apr; 68(4):1036-47; discussion 1047. PubMed ID: 21221028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 123I-iomazenil single photon emission computed tomography visualizes recovery of neuronal integrity by bone marrow stromal cell therapy in rat infarct brain.
    Saito H; Magota K; Zhao S; Kubo N; Kuge Y; Shichinohe H; Houkin K; Tamaki N; Kuroda S
    Stroke; 2013 Oct; 44(10):2869-74. PubMed ID: 23881961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Behavioral and histological evaluation of a focal cerebral infarction rat model transplanted with neurons induced from bone marrow stromal cells.
    Mimura T; Dezawa M; Kanno H; Yamamoto I
    J Neuropathol Exp Neurol; 2005 Dec; 64(12):1108-17. PubMed ID: 16319721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simvastatin mobilizes bone marrow stromal cells migrating to injured areas and promotes functional recovery after spinal cord injury in the rat.
    Han X; Yang N; Cui Y; Xu Y; Dang G; Song C
    Neurosci Lett; 2012 Jul; 521(2):136-41. PubMed ID: 22683506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined treatment with platelet-rich plasma and brain-derived neurotrophic factor-overexpressing bone marrow stromal cells supports axonal remyelination in a rat spinal cord hemi-section model.
    Zhao T; Yan W; Xu K; Qi Y; Dai X; Shi Z
    Cytotherapy; 2013 Jul; 15(7):792-804. PubMed ID: 23731762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oncostatin M-induced upregulation of SDF-1 improves Bone marrow stromal cell migration in a rat middle cerebral artery occlusion stroke model.
    Han J; Feng Z; Xie Y; Li F; Lv B; Hua T; Zhang Z; Sun C; Su D; Ouyang Q; Cai Y; Zou Y; Tang Y; Sun H; Jiang X
    Exp Neurol; 2019 Mar; 313():49-59. PubMed ID: 30213507
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adult bone marrow cells differentiate into neural phenotypes and improve functional recovery in rats following traumatic brain injury.
    Lu J; Moochhala S; Moore XL; Ng KC; Tan MH; Lee LK; He B; Wong MC; Ling EA
    Neurosci Lett; 2006 May; 398(1-2):12-7. PubMed ID: 16455199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.