These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 1930230)

  • 1. Phosphorylation and chromatin mechanics: the central importance of substrate conformation in determining the patterns of HL-60 nuclear phosphorylation.
    Testori A; Skinner JD; Murray AW; Burgoyne LA
    Biochem Biophys Res Commun; 1991 Oct; 180(1):329-33. PubMed ID: 1930230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of substrate conformation in the phosphorylation of chromatin-associated proteins by exogenous protein kinase C.
    Testori A; Burgoyne LA; Murray AW
    Cell Signal; 1992 Mar; 4(2):145-51. PubMed ID: 1616821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A group of chromosomal proteins is specifically released by spermine and loses DNA-binding activity upon phosphorylation.
    Van den Broeck D; Van der Straeten D; Van Montagu M; Caplan A
    Plant Physiol; 1994 Oct; 106(2):559-66. PubMed ID: 7991684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spermine specifically inhibits the phosphorylation of an 11,000-dalton nuclear protein in various cultured mammalian cell lines.
    Chen KY; Verma R
    Biochem Biophys Res Commun; 1984 Feb; 118(3):710-6. PubMed ID: 6704103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyamine-activated protein phosphatase activity in HeLa cell nuclei.
    Friedman DL
    Biochem Biophys Res Commun; 1986 Feb; 134(3):1372-8. PubMed ID: 3004489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous polyamines are intimately associated with highly condensed chromatin in vivo. A fluorescence cytochemical and immunocytochemical study of spermine and spermidine during the cell cycle and in reactivated nuclei.
    Hougaard DM; Bolund L; Fujiwara K; Larsson LI
    Eur J Cell Biol; 1987 Aug; 44(1):151-5. PubMed ID: 3305026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sex-specific alterations in chromatin conformation of the brain of aging mouse.
    Thakur MK; Asaithambi A; Mukherjee S
    Mol Biol Rep; 1999 Dec; 26(4):239-47. PubMed ID: 10634506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyamine-stimulated phosphorylation of prostatic spermine-binding protein is mediated only by cyclic AMP-independent protein kinases.
    Goueli SA; Davis AT; Hiipakka RA; Liao S; Ahmed K
    Biochem J; 1985 Sep; 230(2):293-302. PubMed ID: 2996498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNase I and fragmented chromatin during nuclear degradation in adult bovine lens fibers.
    De María A; Arruti C
    Mol Vis; 2004 Feb; 10():74-82. PubMed ID: 14961008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear aggregates of polyamines are supramolecular structures that play a crucial role in genomic DNA protection and conformation.
    D'Agostino L; di Pietro M; Di Luccia A
    FEBS J; 2005 Aug; 272(15):3777-87. PubMed ID: 16045750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of polyamines on prostatic chromatin- and non-histone-protein-associated protein kinase reactions.
    Ahmed K; Wilson MJ; Goueli SA; Williams-Ashman HG
    Biochem J; 1978 Dec; 176(3):739-50. PubMed ID: 747650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow cytometric methods for studying isolated nuclei: DNA accessibility to DNase I and protein-DNA content.
    Higashikubo R; Wright WD; Roti Roti JL
    Methods Cell Biol; 1990; 33():325-36. PubMed ID: 1707491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of polyamines on the phosphorylation of chromatin-associated proteins.
    Ahmed K; Davis AT; Goueli SA
    Biochem J; 1983 Jan; 209(1):197-205. PubMed ID: 6221717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radioprotection of human cell nuclear DNA by polyamines: radiosensitivity of chromatin is influenced by tightly bound spermine.
    Warters RL; Newton GL; Olive PL; Fahey RC
    Radiat Res; 1999 Mar; 151(3):354-62. PubMed ID: 10073674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of chromatin structure in vivo.
    Mymryk JS; Fryer CJ; Jung LA; Archer TK
    Methods; 1997 May; 12(1):105-14. PubMed ID: 9169200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyamines stimulate endogenous protein phosphorylation in thyroid cytosol.
    Levasseur S; Poleck T; Burke G
    Biochem Biophys Res Commun; 1985 Nov; 133(1):354-60. PubMed ID: 4074376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential conjugation of polyamines to calf nuclear and nucleolar proteins.
    Haddox MK; Russell DH
    J Cell Physiol; 1981 Dec; 109(3):447-52. PubMed ID: 6119315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyamines alter the phosphorylation pattern of chromatin proteins by endogenous protein kinases.
    Hara T; Takahashi K; Yamamoto M; Kisaki H; Endo H
    Biochem Biophys Res Commun; 1982 May; 106(1):131-8. PubMed ID: 7103977
    [No Abstract]   [Full Text] [Related]  

  • 19. [The proliferative kinetics and acid-soluble proteins of the nuclear chromatin in tumor cells with a modified polyamine level].
    Negreĭ GZ; Ianish IuV; Zavelevich MP; Shliakhovenko VA
    Eksp Onkol; 1990; 12(5):65-7. PubMed ID: 2226263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of polyamines and methylglyoxal bis(guanylhydrazone) on hepatic nuclear structure and deoxyribonucleic acid template activity.
    Brown KB; Nelson NF; Brown DG
    Biochem J; 1975 Dec; 151(3):505-12. PubMed ID: 1218090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.