BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

652 related articles for article (PubMed ID: 19302305)

  • 1. In vitro and in vivo antagonism of actinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii: a causal agent of root rot on sugar beet (Beta vulgaris L.).
    Errakhi R; Lebrihi A; Barakate M
    J Appl Microbiol; 2009 Aug; 107(2):672-81. PubMed ID: 19302305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of antagonistic and plant growth promoting activities of chitinolytic endophytic actinomycetes associated with medicinal plants against Sclerotium rolfsii in chickpea.
    Singh SP; Gaur R
    J Appl Microbiol; 2016 Aug; 121(2):506-18. PubMed ID: 27170067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence variation in two protein-coding genes correlates with mycelial compatibility groupings in Sclerotium rolfsii.
    Remesal E; Landa BB; Jiménez-Gasco Mdel M; Navas-Cortés JA
    Phytopathology; 2013 May; 103(5):479-87. PubMed ID: 23301814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocontrol effects of Penicillium griseofulvum against monkshood (Aconitum carmichaelii Debx.) root diseases caused by Sclerotium rolfsiii and Fusarium spp.
    Li Y; Guo Q; Wei X; Xue Q; Lai H
    J Appl Microbiol; 2019 Nov; 127(5):1532-1545. PubMed ID: 31304623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seed-borne endophytic Bacillus velezensis LHSB1 mediate the biocontrol of peanut stem rot caused by Sclerotium rolfsii.
    Chen L; Wu YD; Chong XY; Xin QH; Wang DX; Bian K
    J Appl Microbiol; 2020 Mar; 128(3):803-813. PubMed ID: 31705716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soil suppressiveness to Rhizoctonia solani and microbial diversity.
    Bakker Y; Van Loon FM; Schneider JH
    Commun Agric Appl Biol Sci; 2005; 70(3):29-33. PubMed ID: 16637155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts.
    El-Tarabily KA
    J Appl Microbiol; 2004; 96(1):69-75. PubMed ID: 14678160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of an antifungal soil bacterium and its antagonistic activities against Fusarium species.
    Chan YK; McCormick WA; Seifert KA
    Can J Microbiol; 2003 Apr; 49(4):253-62. PubMed ID: 12897834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani.
    Anees M; Tronsmo A; Edel-Hermann V; Hjeljord LG; Héraud C; Steinberg C
    Fungal Biol; 2010 Sep; 114(9):691-701. PubMed ID: 20943179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and identification of actinomycetes from a compost-amended soil with potential as biocontrol agents.
    Cuesta G; García-de-la-Fuente R; Abad M; Fornes F
    J Environ Manage; 2012 Mar; 95 Suppl():S280-4. PubMed ID: 21190787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of antagonistic fungi against potato scab pathogens from potato field soils.
    Tagawa M; Tamaki H; Manome A; Koyama O; Kamagata Y
    FEMS Microbiol Lett; 2010 Apr; 305(2):136-42. PubMed ID: 20653777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens.
    Eweis M; Elkholy SS; Elsabee MZ
    Int J Biol Macromol; 2006 Feb; 38(1):1-8. PubMed ID: 16413607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actinomycetes from Eucalyptus and their biological activities for controlling Eucalyptus leaf and shoot blight.
    Himaman W; Thamchaipenet A; Pathom-Aree W; Duangmal K
    Microbiol Res; 2016; 188-189():42-52. PubMed ID: 27296961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes.
    El-Tarabily KA; Nassar AH; Hardy GE; Sivasithamparam K
    J Appl Microbiol; 2009 Jan; 106(1):13-26. PubMed ID: 19120624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological control of collar rot disease with broad-spectrum antifungal bacteria associated with groundnut.
    Kishore GK; Pande S; Podile AR
    Can J Microbiol; 2005 Feb; 51(2):123-32. PubMed ID: 16091770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of subsoiling on the yield of sugar beet under conditions of rhizomania infection.
    Németh L; Kuroli G
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(2):321-5. PubMed ID: 12701439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocontrol of Root Diseases and Growth Promotion of the Tuberous Plant Aconitum carmichaelii Induced by Actinomycetes Are Related to Shifts in the Rhizosphere Microbiota.
    Li Y; Guo Q; He F; Li Y; Xue Q; Lai H
    Microb Ecol; 2020 Jan; 79(1):134-147. PubMed ID: 31165188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature, moisture, and fungicide effects in managing Rhizoctonia root and crown rot of sugar beet.
    Bolton MD; Panella L; Campbell L; Khan MF
    Phytopathology; 2010 Jul; 100(7):689-97. PubMed ID: 20528187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antagonistic effects of several bacteria on Verticillium dahliae the causal agent of cotton wilt.
    Tehrani AS; Disfani FA; Hedjaroud GA; Mohammadi M
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2a):95-101. PubMed ID: 12425025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering the rhizosphere microbiome for disease-suppressive bacteria.
    Mendes R; Kruijt M; de Bruijn I; Dekkers E; van der Voort M; Schneider JH; Piceno YM; DeSantis TZ; Andersen GL; Bakker PA; Raaijmakers JM
    Science; 2011 May; 332(6033):1097-100. PubMed ID: 21551032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.