These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

658 related articles for article (PubMed ID: 19302305)

  • 1. In vitro and in vivo antagonism of actinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii: a causal agent of root rot on sugar beet (Beta vulgaris L.).
    Errakhi R; Lebrihi A; Barakate M
    J Appl Microbiol; 2009 Aug; 107(2):672-81. PubMed ID: 19302305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of antagonistic and plant growth promoting activities of chitinolytic endophytic actinomycetes associated with medicinal plants against Sclerotium rolfsii in chickpea.
    Singh SP; Gaur R
    J Appl Microbiol; 2016 Aug; 121(2):506-18. PubMed ID: 27170067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence variation in two protein-coding genes correlates with mycelial compatibility groupings in Sclerotium rolfsii.
    Remesal E; Landa BB; Jiménez-Gasco Mdel M; Navas-Cortés JA
    Phytopathology; 2013 May; 103(5):479-87. PubMed ID: 23301814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocontrol effects of Penicillium griseofulvum against monkshood (Aconitum carmichaelii Debx.) root diseases caused by Sclerotium rolfsiii and Fusarium spp.
    Li Y; Guo Q; Wei X; Xue Q; Lai H
    J Appl Microbiol; 2019 Nov; 127(5):1532-1545. PubMed ID: 31304623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seed-borne endophytic Bacillus velezensis LHSB1 mediate the biocontrol of peanut stem rot caused by Sclerotium rolfsii.
    Chen L; Wu YD; Chong XY; Xin QH; Wang DX; Bian K
    J Appl Microbiol; 2020 Mar; 128(3):803-813. PubMed ID: 31705716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soil suppressiveness to Rhizoctonia solani and microbial diversity.
    Bakker Y; Van Loon FM; Schneider JH
    Commun Agric Appl Biol Sci; 2005; 70(3):29-33. PubMed ID: 16637155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts.
    El-Tarabily KA
    J Appl Microbiol; 2004; 96(1):69-75. PubMed ID: 14678160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of an antifungal soil bacterium and its antagonistic activities against Fusarium species.
    Chan YK; McCormick WA; Seifert KA
    Can J Microbiol; 2003 Apr; 49(4):253-62. PubMed ID: 12897834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani.
    Anees M; Tronsmo A; Edel-Hermann V; Hjeljord LG; Héraud C; Steinberg C
    Fungal Biol; 2010 Sep; 114(9):691-701. PubMed ID: 20943179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and identification of actinomycetes from a compost-amended soil with potential as biocontrol agents.
    Cuesta G; García-de-la-Fuente R; Abad M; Fornes F
    J Environ Manage; 2012 Mar; 95 Suppl():S280-4. PubMed ID: 21190787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of antagonistic fungi against potato scab pathogens from potato field soils.
    Tagawa M; Tamaki H; Manome A; Koyama O; Kamagata Y
    FEMS Microbiol Lett; 2010 Apr; 305(2):136-42. PubMed ID: 20653777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens.
    Eweis M; Elkholy SS; Elsabee MZ
    Int J Biol Macromol; 2006 Feb; 38(1):1-8. PubMed ID: 16413607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actinomycetes from Eucalyptus and their biological activities for controlling Eucalyptus leaf and shoot blight.
    Himaman W; Thamchaipenet A; Pathom-Aree W; Duangmal K
    Microbiol Res; 2016; 188-189():42-52. PubMed ID: 27296961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes.
    El-Tarabily KA; Nassar AH; Hardy GE; Sivasithamparam K
    J Appl Microbiol; 2009 Jan; 106(1):13-26. PubMed ID: 19120624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological control of collar rot disease with broad-spectrum antifungal bacteria associated with groundnut.
    Kishore GK; Pande S; Podile AR
    Can J Microbiol; 2005 Feb; 51(2):123-32. PubMed ID: 16091770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of subsoiling on the yield of sugar beet under conditions of rhizomania infection.
    Németh L; Kuroli G
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(2):321-5. PubMed ID: 12701439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocontrol of Root Diseases and Growth Promotion of the Tuberous Plant Aconitum carmichaelii Induced by Actinomycetes Are Related to Shifts in the Rhizosphere Microbiota.
    Li Y; Guo Q; He F; Li Y; Xue Q; Lai H
    Microb Ecol; 2020 Jan; 79(1):134-147. PubMed ID: 31165188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature, moisture, and fungicide effects in managing Rhizoctonia root and crown rot of sugar beet.
    Bolton MD; Panella L; Campbell L; Khan MF
    Phytopathology; 2010 Jul; 100(7):689-97. PubMed ID: 20528187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antagonistic effects of several bacteria on Verticillium dahliae the causal agent of cotton wilt.
    Tehrani AS; Disfani FA; Hedjaroud GA; Mohammadi M
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2a):95-101. PubMed ID: 12425025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering the rhizosphere microbiome for disease-suppressive bacteria.
    Mendes R; Kruijt M; de Bruijn I; Dekkers E; van der Voort M; Schneider JH; Piceno YM; DeSantis TZ; Andersen GL; Bakker PA; Raaijmakers JM
    Science; 2011 May; 332(6033):1097-100. PubMed ID: 21551032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.