BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 19302317)

  • 1. Modification of azo dyes by lactic acid bacteria.
    Pérez-Díaz IM; McFeeters RF
    J Appl Microbiol; 2009 Aug; 107(2):584-9. PubMed ID: 19302317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactobacilli and tartrazine as causative agents of red-color spoilage in cucumber pickle products.
    Pérez-Díaz IM; Kelling RE; Hale S; Breidt F; McFeeters RF
    J Food Sci; 2007 Sep; 72(7):M240-5. PubMed ID: 17995647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of textile azo dye by Shewanella decolorationis S12 under microaerophilic conditions.
    Xu M; Guo J; Sun G
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):719-26. PubMed ID: 17589840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of dioctyl sodium sulphosuccinate on tartrazine azo reduction by intestinal bacteria.
    Allan RJ; Roxon JJ
    Xenobiotica; 1977 Mar; 7(3):181-6. PubMed ID: 322398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic and combined anaerobic-photocatalytic treatment of textile dyes.
    Harrelkas F; Paulo A; Alves MM; El Khadir L; Zahraa O; Pons MN; van der Zee FP
    Chemosphere; 2008 Aug; 72(11):1816-22. PubMed ID: 18585754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decolorization of anthraquinone dye intermediate and its accelerating effect on reduction of azo acid dyes by Sphingomonas xenophaga in anaerobic-aerobic process.
    Lu H; Zhou J; Wang J; Ai H; Zheng C; Yang Y
    Biodegradation; 2008 Sep; 19(5):643-50. PubMed ID: 18074231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intestinal absorption of polymeric derivatives of the food dyes sunset yellow and tartrazine in rats.
    Honohan T; Enderlin FE; Ryerson BA; Parkinson TM
    Xenobiotica; 1977 Dec; 7(12):765-74. PubMed ID: 602250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The reduction of azo dyes by the intestinal microflora.
    Chung KT; Stevens SE; Cerniglia CE
    Crit Rev Microbiol; 1992; 18(3):175-90. PubMed ID: 1554423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of azo food dyes in cultures of Proteus vulgaris.
    Dubin P; Wright KL
    Xenobiotica; 1975 Sep; 5(9):563-71. PubMed ID: 1103488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Succession of dominant and antagonistic lactic acid bacteria in fermented cucumber: insights from a PCR-based approach.
    Singh AK; Ramesh A
    Food Microbiol; 2008 Apr; 25(2):278-87. PubMed ID: 18206770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products.
    Valerio F; Favilla M; De Bellis P; Sisto A; de Candia S; Lavermicocca P
    Syst Appl Microbiol; 2009 Sep; 32(6):438-48. PubMed ID: 19243908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Special traits of decomposition of azo dies by anaerobic microbial communities].
    Emashova NA; Kotova IB; Netrusov AI; Kaliuzhnyĭ SV
    Prikl Biokhim Mikrobiol; 2009; 45(2):195-201. PubMed ID: 19382707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Utilization of lactic bacteria in the control of pathogenic microorganisms in food].
    Hernández PE; Rodríguez JM; Cintas LM; Moreira WL; Sobrino OJ; Fernández MF; Sanz B
    Microbiologia; 1993 Feb; 9 Spec No():37-48. PubMed ID: 8484916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution of biotic and abiotic processes during azo dye reduction in anaerobic sludge.
    van der Zee FP; Bisschops IA; Blanchard VG; Bouwman RH; Lettinga G; Field JA
    Water Res; 2003 Jul; 37(13):3098-109. PubMed ID: 14509696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biogenic amine production by lactic acid bacteria isolated from cider.
    Garai G; Dueñas MT; Irastorza A; Moreno-Arribas MV
    Lett Appl Microbiol; 2007 Nov; 45(5):473-8. PubMed ID: 17958552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerobic degradation of a mixture of azo dyes in a packed bed reactor having bacteria-coated laterite pebbles.
    Senan RC; Shaffiqu TS; Roy JJ; Abraham TE
    Biotechnol Prog; 2003; 19(2):647-51. PubMed ID: 12675610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decolorization of azo dyes by Shewanella sp. under saline conditions.
    Khalid A; Arshad M; Crowley DE
    Appl Microbiol Biotechnol; 2008 Jul; 79(6):1053-9. PubMed ID: 18461315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ecological study of lactic acid bacteria from Almagro eggplant fermentation brines.
    Seseña S; Palop ML
    J Appl Microbiol; 2007 Nov; 103(5):1553-61. PubMed ID: 17953566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of total non-sulphonated aromatic amines in tartrazine, sunset yellow FCF and allura red by reduction and derivatization followed by high-performance liquid chromatography.
    Lancaster FE; Lawrence JF
    Food Addit Contam; 1991; 8(3):249-63. PubMed ID: 1778264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of aeration on growth and on production of bacteriocins and other metabolites in cultures of eight strains of lactic acid bacteria.
    Vázquez JA; Mirón J; González MP; Murado MA
    Appl Biochem Biotechnol; 2005 Nov; 127(2):111-24. PubMed ID: 16258188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.