These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 19302794)

  • 1. Robustness and topology of the yeast cell cycle Boolean network.
    Lee WB; Huang JY
    FEBS Lett; 2009 Mar; 583(5):927-32. PubMed ID: 19302794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robustness and state-space structure of Boolean gene regulatory models.
    Willadsen K; Wiles J
    J Theor Biol; 2007 Dec; 249(4):749-65. PubMed ID: 17936309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superstability of the yeast cell-cycle dynamics: ensuring causality in the presence of biochemical stochasticity.
    Braunewell S; Bornholdt S
    J Theor Biol; 2007 Apr; 245(4):638-43. PubMed ID: 17204290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide system analysis reveals stable yet flexible network dynamics in yeast.
    Gustafsson M; Hörnquist M; Björkegren J; Tegnér J
    IET Syst Biol; 2009 Jul; 3(4):219-28. PubMed ID: 19640161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Few crucial links assure checkpoint efficiency in the yeast cell-cycle network.
    Stoll G; Rougemont J; Naef F
    Bioinformatics; 2006 Oct; 22(20):2539-46. PubMed ID: 16895923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new framework for identifying combinatorial regulation of transcription factors: a case study of the yeast cell cycle.
    Wang J
    J Biomed Inform; 2007 Dec; 40(6):707-25. PubMed ID: 17418646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Logical analysis of the budding yeast cell cycle.
    Irons DJ
    J Theor Biol; 2009 Apr; 257(4):543-59. PubMed ID: 19185585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function constrains network architecture and dynamics: a case study on the yeast cell cycle Boolean network.
    Lau KY; Ganguli S; Tang C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051907. PubMed ID: 17677098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular networks and system-level properties.
    Alberghina L; Höfer T; Vanoni M
    J Biotechnol; 2009 Nov; 144(3):224-33. PubMed ID: 19616593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Networks and circuits in cell regulation.
    Palumbo P; Mavelli G; Farina L; Alberghina L
    Biochem Biophys Res Commun; 2010 Jun; 396(4):881-6. PubMed ID: 20457126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell growth and cell cycle in Saccharomyces cerevisiae: basic regulatory design and protein-protein interaction network.
    Alberghina L; Mavelli G; Drovandi G; Palumbo P; Pessina S; Tripodi F; Coccetti P; Vanoni M
    Biotechnol Adv; 2012; 30(1):52-72. PubMed ID: 21821114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamical and topological robustness of the mammalian cell cycle network: a reverse engineering approach.
    Ruz GA; Goles E; Montalva M; Fogel GB
    Biosystems; 2014 Jan; 115():23-32. PubMed ID: 24212100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robustness of Boolean dynamics under knockouts.
    Boldhaus G; Bertschinger N; Rauh J; Olbrich E; Klemm K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021916. PubMed ID: 20866846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic properties of Boolean dynamics in complex networks.
    Kinoshita S; Iguchi K; Yamada HS
    J Theor Biol; 2009 Feb; 256(3):351-69. PubMed ID: 19014957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple knockout analysis of genetic robustness in the yeast metabolic network.
    Deutscher D; Meilijson I; Kupiec M; Ruppin E
    Nat Genet; 2006 Sep; 38(9):993-8. PubMed ID: 16941010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of the transcriptional regulatory networks of E. coli and yeast: structural characteristics leading to marginal dynamic stability.
    Lee DS; Rieger H
    J Theor Biol; 2007 Oct; 248(4):618-26. PubMed ID: 17692874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Funneled landscape leads to robustness of cell networks: yeast cell cycle.
    Wang J; Huang B; Xia X; Sun Z
    PLoS Comput Biol; 2006 Nov; 2(11):e147. PubMed ID: 17112311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A checkpoints capturing timing-robust Boolean model of the budding yeast cell cycle regulatory network.
    Hong C; Lee M; Kim D; Kim D; Cho KH; Shin I
    BMC Syst Biol; 2012 Sep; 6():129. PubMed ID: 23017186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of molecular noise and size control on variability in the budding yeast cell cycle.
    Di Talia S; Skotheim JM; Bean JM; Siggia ED; Cross FR
    Nature; 2007 Aug; 448(7156):947-51. PubMed ID: 17713537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the robustness of complex heterogeneous gene expression networks.
    Gómez-Gardeñes J; Moreno Y; Floría LM
    Biophys Chem; 2005 Apr; 115(2-3):225-8. PubMed ID: 15752609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.