BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

455 related articles for article (PubMed ID: 19302796)

  • 21. Specific plasma membrane aquaporins of the PIP1 subfamily are expressed in sieve elements and guard cells.
    Fraysse LC; Wells B; McCann MC; Kjellbom P
    Biol Cell; 2005 Jul; 97(7):519-34. PubMed ID: 15898953
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aquaporin gating.
    Hedfalk K; Törnroth-Horsefield S; Nyblom M; Johanson U; Kjellbom P; Neutze R
    Curr Opin Struct Biol; 2006 Aug; 16(4):447-56. PubMed ID: 16837191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aquaporin-0 membrane junctions reveal the structure of a closed water pore.
    Gonen T; Sliz P; Kistler J; Cheng Y; Walz T
    Nature; 2004 May; 429(6988):193-7. PubMed ID: 15141214
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights into structural mechanisms of gating induced regulation of aquaporins.
    Sachdeva R; Singh B
    Prog Biophys Mol Biol; 2014 Apr; 114(2):69-79. PubMed ID: 24495464
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Affinity tags can reduce merohedral twinning of membrane protein crystals.
    Backmark A; Nyblom M; Törnroth-Horsefield S; Kosinska-Eriksson U; Nordén K; Fellert M; Kjellbom P; Johanson U; Hedfalk K; Lindkvist-Petersson K; Neutze R; Horsefield R
    Acta Crystallogr D Biol Crystallogr; 2008 Nov; 64(Pt 11):1183-6. PubMed ID: 19020358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid gating and anion permeability of an intracellular aquaporin.
    Yasui M; Hazama A; Kwon TH; Nielsen S; Guggino WB; Agre P
    Nature; 1999 Nov; 402(6758):184-7. PubMed ID: 10647010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers.
    Bienert GP; Cavez D; Besserer A; Berny MC; Gilis D; Rooman M; Chaumont F
    Biochem J; 2012 Jul; 445(1):101-11. PubMed ID: 22506965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aquaporin structure-function relationships: water flow through plant living cells.
    Zhao CX; Shao HB; Chu LY
    Colloids Surf B Biointerfaces; 2008 Apr; 62(2):163-72. PubMed ID: 18063350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The structure of aquaporins.
    Gonen T; Walz T
    Q Rev Biophys; 2006 Nov; 39(4):361-96. PubMed ID: 17156589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of aquaporin-driven hydrogen peroxide transport.
    Wang H; Schoebel S; Schmitz F; Dong H; Hedfalk K
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183065. PubMed ID: 31521632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Water channel activities of Mimosa pudica plasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation.
    Temmei Y; Uchida S; Hoshino D; Kanzawa N; Kuwahara M; Sasaki S; Tsuchiya T
    FEBS Lett; 2005 Aug; 579(20):4417-22. PubMed ID: 16061230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of a novel phosphorylation motif for CDPKs: phosphorylation of synthetic peptides lacking basic residues at P-3/P-4.
    Huang JZ; Hardin SC; Huber SC
    Arch Biochem Biophys; 2001 Sep; 393(1):61-6. PubMed ID: 11516161
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations?
    Hub JS; Grubmüller H; de Groot BL
    Handb Exp Pharmacol; 2009; (190):57-76. PubMed ID: 19096772
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional reconstitution and characterization of AqpZ, the E. coli water channel protein.
    Borgnia MJ; Kozono D; Calamita G; Maloney PC; Agre P
    J Mol Biol; 1999 Sep; 291(5):1169-79. PubMed ID: 10518952
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro analysis and modification of aquaporin pore selectivity.
    Beitz E; Becker D; von Bülow J; Conrad C; Fricke N; Geadkaew A; Krenc D; Song J; Wree D; Wu B
    Handb Exp Pharmacol; 2009; (190):77-92. PubMed ID: 19096773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels.
    Wallace IS; Roberts DM
    Biochemistry; 2005 Dec; 44(51):16826-34. PubMed ID: 16363796
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural basis of water-specific transport through the AQP1 water channel.
    Sui H; Han BG; Lee JK; Walian P; Jap BK
    Nature; 2001 Dec 20-27; 414(6866):872-8. PubMed ID: 11780053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The cellular dynamics of plant aquaporin expression and functions.
    Maurel C; Santoni V; Luu DT; Wudick MM; Verdoucq L
    Curr Opin Plant Biol; 2009 Dec; 12(6):690-8. PubMed ID: 19783200
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aquaporin 0-calmodulin interaction and the effect of aquaporin 0 phosphorylation.
    Rose KM; Wang Z; Magrath GN; Hazard ES; Hildebrandt JD; Schey KL
    Biochemistry; 2008 Jan; 47(1):339-47. PubMed ID: 18081321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gating in plant plasma membrane aquaporins: the involvement of leucine in the formation of a pore constriction in the closed state.
    Canessa Fortuna A; Zerbetto De Palma G; Aliperti Car L; Armentia L; Vitali V; Zeida A; Estrin DA; Alleva K
    FEBS J; 2019 Sep; 286(17):3473-3487. PubMed ID: 31077546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.