BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

482 related articles for article (PubMed ID: 19302832)

  • 1. Activity-dependent plasticity of developing climbing fiber-Purkinje cell synapses.
    Bosman LW; Konnerth A
    Neuroscience; 2009 Sep; 162(3):612-23. PubMed ID: 19302832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bidirectional plasticity at developing climbing fiber-Purkinje neuron synapses.
    Ohtsuki G; Hirano T
    Eur J Neurosci; 2008 Dec; 28(12):2393-400. PubMed ID: 19032589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of parallel fiber-Purkinje cell synapse formation on postnatal development of climbing fiber-Purkinje cell synapses in the cerebellum.
    Hashimoto K; Yoshida T; Sakimura K; Mishina M; Watanabe M; Kano M
    Neuroscience; 2009 Sep; 162(3):601-11. PubMed ID: 19166909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climbing fiber synaptic plasticity and modifications in Purkinje cell excitability.
    Schmolesky MT; De Zeeuw CI; Hansel C
    Prog Brain Res; 2005; 148():81-94. PubMed ID: 15661183
    [No Abstract]   [Full Text] [Related]  

  • 5. Activity-dependent axonal and synaptic plasticity in the cerebellum.
    Cesa R; Strata P
    Psychoneuroendocrinology; 2007 Aug; 32 Suppl 1():S31-5. PubMed ID: 17640822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the structure of synaptic junctions during climbing fiber synaptogenesis.
    Landis DM; Payne HR; Weinstein LA
    Synapse; 1989; 4(4):281-93. PubMed ID: 2603147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normal adult climbing fiber monoinnervation of cerebellar Purkinje cells in mice lacking MHC class I molecules.
    Letellier M; Willson ML; Gautheron V; Mariani J; Lohof AM
    Dev Neurobiol; 2008 Jul; 68(8):997-1006. PubMed ID: 18418877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A change in the pattern of activity affects the developmental regression of the Purkinje cell polyinnervation by climbing fibers in the rat cerebellum.
    Andjus PR; Zhu L; Cesa R; Carulli D; Strata P
    Neuroscience; 2003; 121(3):563-72. PubMed ID: 14568018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early climbing fiber interactions with Purkinje cells in the postnatal mouse cerebellum.
    Mason CA; Christakos S; Catalano SM
    J Comp Neurol; 1990 Jul; 297(1):77-90. PubMed ID: 1695909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium imaging of climbing fiber innervation fields in developing mouse Purkinje cells.
    Scelfo B; Strata P; Knöpfel T
    J Neurophysiol; 2003 May; 89(5):2555-63. PubMed ID: 12612029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for synaptic plasticity in the cerebellar cortex.
    Ito M
    Acta Morphol Hung; 1983; 31(1-3):213-8. PubMed ID: 6312772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between multiple climbing fibre regression and parallel fibre response development in the postnatal mouse cerebellum.
    Scelfo B; Strata P
    Eur J Neurosci; 2005 Feb; 21(4):971-8. PubMed ID: 15787703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of "Pinceaux" formations and dendritic translocation of climbing fibers during the acquisition of the balance between glutamatergic and gamma-aminobutyric acidergic inputs in developing Purkinje cells.
    Sotelo C
    J Comp Neurol; 2008 Jan; 506(2):240-62. PubMed ID: 18022955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic plasticity in the cerebellar cortex and its role in motor learning.
    Ito M
    Can J Neurol Sci; 1993 May; 20 Suppl 3():S70-4. PubMed ID: 8334595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-term facilitation and depression in the cerebellum: some observations on wild-type and mutant rodents deficient in the extracellular matrix molecule tenascin C.
    Andjus PR; Bajić A; Zhu L; Schachner M; Strata P
    Ann N Y Acad Sci; 2005 Jun; 1048():185-97. PubMed ID: 16154932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The rat olivocerebellar system visualized in detail with anterograde PHA-L tracing technique, and sprouting of climbing fibers demonstrated after subtotal olivary lesions.
    Wiklund L; Rossi F; Strata P; van der Want JJ
    Eur J Morphol; 1990; 28(2-4):256-67. PubMed ID: 2245134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical period for activity-dependent synapse elimination in developing cerebellum.
    Kakizawa S; Yamasaki M; Watanabe M; Kano M
    J Neurosci; 2000 Jul; 20(13):4954-61. PubMed ID: 10864953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axonal and synaptic remodeling in the mature cerebellar cortex.
    Cesa R; Strata P
    Prog Brain Res; 2005; 148():45-56. PubMed ID: 15661180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate of grafted embryonic Purkinje cells in the cerebellum of the adult "Purkinje cell degeneration" mutant mouse. II. Development of synaptic responses: an in vitro study.
    Gardette R; Crepel F; Alvarado-Mallart RM; Sotelo C
    J Comp Neurol; 1990 May; 295(2):188-96. PubMed ID: 2358511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity of synaptic size with constancy of total synaptic contact area on Purkinje cells in the cerebellum.
    Hillman DE; Chen S
    Prog Clin Biol Res; 1981; 59A():229-45. PubMed ID: 6795641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.