BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 1930301)

  • 1. Effects of adenosine analogues on ATP concentrations in human erythrocytes. Further evidence for a route independent of adenosine kinase.
    Smolenski RT; Montero C; Duley JA; Simmonds HA
    Biochem Pharmacol; 1991 Oct; 42(9):1767-73. PubMed ID: 1930301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of adenosine triphosphate catabolism induced by deoxyadenosine and by nucleoside analogues in adenosine deaminase-inhibited human erythrocytes.
    Bontemps F; Van den Berghe G
    Cancer Res; 1989 Sep; 49(18):4983-9. PubMed ID: 2788493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenine nucleotide catabolism in human erythrocytes: pathways and regulation.
    van den Berghe G; Bontemps F
    Biomed Biochim Acta; 1990; 49(2-3):S117-22. PubMed ID: 2167076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S-adenosylmethionine increases erythrocyte ATP in vitro by a route independent of adenosine kinase.
    Montero C; Smolenski RT; Duley JA; Simmonds HA
    Biochem Pharmacol; 1990 Dec; 40(12):2617-23. PubMed ID: 2260986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of ATP catabolism induced by deoxyadenosine and other nucleosides in adenosine deaminase-inhibited human erythrocytes.
    Bontemps F; Van den Berghe G
    Adv Exp Med Biol; 1989; 253B():267-74. PubMed ID: 2558538
    [No Abstract]   [Full Text] [Related]  

  • 6. Adenosine metabolism in wild-type and enzyme-deficient variants of Chinese hamster ovary and Novikoff rat hepatoma cells.
    Plagemann PG; Wohlhueter RM
    J Cell Physiol; 1983 Aug; 116(2):236-46. PubMed ID: 6306018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in nucleotide pools induced by 3-deazaadenosine and related compounds. Role of adenylate deaminase.
    Bennett LL; Brockman RW; Allan PW; Rose LM; Shaddix SC
    Biochem Pharmacol; 1988 Apr; 37(7):1233-44. PubMed ID: 3355597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of deoxyadenosine and nucleoside analog phosphorylation by human placental adenosine kinase.
    Hurley MC; Lin B; Fox IH
    J Biol Chem; 1985 Dec; 260(29):15675-81. PubMed ID: 2999129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenine/ribose supply increases adenosine production and protects ATP pool in adenosine kinase-inhibited cardiac cells.
    Smolenski RT; Kalsi KK; Zych M; Kochan Z; Yacoub MH
    J Mol Cell Cardiol; 1998 Mar; 30(3):673-83. PubMed ID: 9515042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport and metabolism of adenosine in human erythrocytes: effect of transport inhibitors and regulation by phosphate.
    Plagemann PG
    J Cell Physiol; 1986 Sep; 128(3):491-500. PubMed ID: 3488996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of adenosine metabolism inhibition and nucleotide precursor supply on adenosine production in human heart endothelial cells.
    Smolenski RT; Kalsi KK; Gray CC; Zych M; Kochan Z; Yacoub MH
    Adv Exp Med Biol; 2000; 486():163-6. PubMed ID: 11783477
    [No Abstract]   [Full Text] [Related]  

  • 12. Pathways of purine metabolism in human adipocytes. Further evidence against a role of adenosine as an endogenous regulator of human fat cell function.
    Kather H
    J Biol Chem; 1990 Jan; 265(1):96-102. PubMed ID: 2294125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine kinase inhibitors augment release of adenosine from spinal cord slices.
    Golembiowska K; White TD; Sawynok J
    Eur J Pharmacol; 1996 Jun; 307(2):157-62. PubMed ID: 8832217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP formation from deoxyadenosine in human erythrocytes: evidence for a hitherto unidentified route involving adenine and S-adenosylhomocysteine hydrolase.
    Simmonds HA; Fairbanks LD; Duley JA; Morris GS
    Biosci Rep; 1989 Feb; 9(1):75-85. PubMed ID: 2785825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective adenosine release from human B but not T lymphoid cell line.
    Barankiewicz J; Ronlov G; Jimenez R; Gruber HE
    J Biol Chem; 1990 Sep; 265(26):15738-43. PubMed ID: 2394745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specificity of 2'-deoxycoformycin inhibition of adenosine metabolism in intact human skin fibroblasts.
    Holland MJ
    Res Commun Chem Pathol Pharmacol; 1986 Mar; 51(3):311-24. PubMed ID: 3486439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-administration of adenosine kinase and deaminase inhibitors produces supra-additive potentiation of N-methyl-D-aspartate-evoked adenosine formation in cortex.
    Hebb MO; White TD
    Eur J Pharmacol; 1998 Mar; 344(2-3):121-5. PubMed ID: 9600645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathways of adenine nucleotide catabolism in human erythrocytes.
    Bontemps F; Van den Berghe G; Hers HG
    Adv Exp Med Biol; 1986; 195 Pt B():329-36. PubMed ID: 3490125
    [No Abstract]   [Full Text] [Related]  

  • 19. Evidence for distinct catabolic pathways of adenine ribonucleotides and deoxyribonucleotides in human T lymphoblastoid cells.
    Barankiewicz J; Cohen A
    J Biol Chem; 1984 Dec; 259(24):15178-81. PubMed ID: 6334686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of hepatocytic autophagy by adenosine, adenosine analogs and AMP.
    Kovács AL; Gordon PB; Grotterød EM; Seglen PO
    Biol Chem; 1998 Nov; 379(11):1341-7. PubMed ID: 9865607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.