BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19303038)

  • 1. A designer biomimetic vector with a chimeric architecture for targeted gene transfer.
    Wang Y; Mangipudi SS; Canine BF; Hatefi A
    J Control Release; 2009 Jul; 137(1):46-53. PubMed ID: 19303038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a genetically engineered biomimetic vector for targeted gene transfer to breast cancer cells.
    Mangipudi SS; Canine BF; Wang Y; Hatefi A
    Mol Pharm; 2009; 6(4):1100-9. PubMed ID: 19419197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Recombinant Multifunctional Biomacromolecule for Targeted Gene Transfer to Prostate Cancer Cells.
    Hatefi A; Karjoo Z; Nomani A
    Biomacromolecules; 2017 Sep; 18(9):2799-2807. PubMed ID: 28806522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a novel histone H1-based recombinant fusion peptide for targeted non-viral gene delivery.
    Soltani F; Sankian M; Hatefi A; Ramezani M
    Int J Pharm; 2013 Jan; 441(1-2):307-15. PubMed ID: 23200954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of an aptamer-decorated chimeric peptide nanocarrier for targeted cancer gene delivery.
    Dehghani S; Alibolandi M; Tehranizadeh ZA; Oskuee RK; Nosrati R; Soltani F; Ramezani M
    Colloids Surf B Biointerfaces; 2021 Dec; 208():112047. PubMed ID: 34418722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Targeted anti-HER2 scFv Chimeric Peptide for Gene Delivery into HER2-Positive Breast Cancer Cells.
    Cheraghi R; Nazari M; Alipour M; Majidi A; Hosseinkhani S
    Int J Pharm; 2016 Dec; 515(1-2):632-643. PubMed ID: 27825868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, engineering and preparation of a multi-domain fusion vector for gene delivery.
    Sadeghian F; Hosseinkhani S; Alizadeh A; Hatefi A
    Int J Pharm; 2012 May; 427(2):393-9. PubMed ID: 22342333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the effect of vector architecture on DNA condensation and gene transfer efficiency.
    Canine BF; Wang Y; Hatefi A
    J Control Release; 2008 Jul; 129(2):117-23. PubMed ID: 18524409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of novel recombinant biomimetic chimeric MPG-based peptide as nanocarriers for gene delivery: Imitation of a real cargo.
    Majidi A; Nikkhah M; Sadeghian F; Hosseinkhani S
    Eur J Pharm Biopharm; 2016 Oct; 107():191-204. PubMed ID: 27368745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis and characterization of a novel genetically engineered polymer for targeted gene transfer to cancer cells.
    Canine BF; Wang Y; Hatefi A
    J Control Release; 2009 Sep; 138(3):188-96. PubMed ID: 19379785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of TMTP-1 targeted designer biopolymers for gene delivery to prostate cancer.
    McBride JW; Massey AS; McCaffrey J; McCrudden CM; Coulter JA; Dunne NJ; Robson T; McCarthy HO
    Int J Pharm; 2016 Mar; 500(1-2):144-53. PubMed ID: 26802497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibody-mediated targeting of replication-competent retroviral vectors.
    Tai CK; Logg CR; Park JM; Anderson WF; Press MF; Kasahara N
    Hum Gene Ther; 2003 May; 14(8):789-802. PubMed ID: 12804141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recombinant polymer-protein fusion: a promising approach towards efficient and targeted gene delivery.
    Hatefi A; Megeed Z; Ghandehari H
    J Gene Med; 2006 Apr; 8(4):468-76. PubMed ID: 16416505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low molecular weight polyethylenimine cross-linked by 2-hydroxypropyl-gamma-cyclodextrin coupled to peptide targeting HER2 as a gene delivery vector.
    Huang H; Yu H; Tang G; Wang Q; Li J
    Biomaterials; 2010 Mar; 31(7):1830-8. PubMed ID: 19942284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel synthetic peptide vector system for optimal gene delivery to bone marrow stromal cells.
    Haitao P; Qixin Z; Xiaodong G
    J Pept Sci; 2007 Mar; 13(3):154-63. PubMed ID: 17154339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanosized, peptide-based multicomponent DNA delivery systems: optimization of endosome escape activity.
    Wan Y; Moyle PM; Christie MP; Toth I
    Nanomedicine (Lond); 2016 Apr; 11(8):907-19. PubMed ID: 26979574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A modular DNA carrier protein based on the structure of diphtheria toxin mediates target cell-specific gene delivery.
    Uherek C; Fominaya J; Wels W
    J Biol Chem; 1998 Apr; 273(15):8835-41. PubMed ID: 9535863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histidylated lipid-modified Sendai viral envelopes mediate enhanced membrane fusion and potentiate targeted gene delivery.
    Verma SK; Mani P; Sharma NR; Krishnan A; Kumar VV; Reddy BS; Chaudhuri A; Roy RP; Sarkar DP
    J Biol Chem; 2005 Oct; 280(42):35399-409. PubMed ID: 16085643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a multifunctional PEG-based gene delivery system containing nuclear localization signals and endosomal escape peptides.
    Moore NM; Sheppard CL; Sakiyama-Elbert SE
    Acta Biomater; 2009 Mar; 5(3):854-64. PubMed ID: 18926782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection.
    Lo SL; Wang S
    Biomaterials; 2008 May; 29(15):2408-14. PubMed ID: 18295328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.