These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
430 related articles for article (PubMed ID: 19303195)
1. Bioleaching of heavy metals from sewage sludge: a review. Pathak A; Dastidar MG; Sreekrishnan TR J Environ Manage; 2009 Jun; 90(8):2343-53. PubMed ID: 19303195 [TBL] [Abstract][Full Text] [Related]
2. Heavy metal removal from contaminated sludge for land application: a review. Babel S; del Mundo Dacera D Waste Manag; 2006; 26(9):988-1004. PubMed ID: 16298121 [TBL] [Abstract][Full Text] [Related]
3. Effect of substrate concentration on the bioleaching of heavy metals from sewage sludge. Chen YX; Hua YM; Zhang SH J Environ Sci (China); 2004; 16(5):788-92. PubMed ID: 15559813 [TBL] [Abstract][Full Text] [Related]
4. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge. Bayat B; Sari B J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247 [TBL] [Abstract][Full Text] [Related]
5. Heavy metal removal from wastewater and leachate co-treatment sludge by sulfur oxidizing bacteria. Aralp LC; Erdincler A; Onay TT Water Sci Technol; 2001; 44(10):53-8. PubMed ID: 11794681 [TBL] [Abstract][Full Text] [Related]
6. Optimization of Fe2 +/solids content ratio for a novel sludge heavy metal bioleaching process. Wong JW; Gu XY Water Sci Technol; 2008; 57(3):445-50. PubMed ID: 18309225 [TBL] [Abstract][Full Text] [Related]
7. Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source. Wong JW; Xiang L; Gu XY; Zhou LX Chemosphere; 2004 Apr; 55(1):101-7. PubMed ID: 14720552 [TBL] [Abstract][Full Text] [Related]
8. Waste paper and clinoptilolite as a bulking material with dewatered anaerobically stabilized primary sewage sludge (DASPSS) for compost production. Zorpas AA; Arapoglou D; Panagiotis K Waste Manag; 2003; 23(1):27-35. PubMed ID: 12623099 [TBL] [Abstract][Full Text] [Related]
9. Potential for land application of contaminated sewage sludge treated with fermented liquid from pineapple wastes. Del Mundo Dacera D; Babel S; Parkpian P J Hazard Mater; 2009 Aug; 167(1-3):866-72. PubMed ID: 19232826 [TBL] [Abstract][Full Text] [Related]
10. Comparison of bioleaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge. Xu Y; Zhang C; Zhao M; Rong H; Zhang K; Chen Q Chemosphere; 2017 Feb; 168():1152-1157. PubMed ID: 27806888 [TBL] [Abstract][Full Text] [Related]
11. Potential benefits and risks of land application of sewage sludge. Singh RP; Agrawal M Waste Manag; 2008; 28(2):347-58. PubMed ID: 17320368 [TBL] [Abstract][Full Text] [Related]
12. Bioleaching of heavy metals from wastewater sludge with the aim of land application. Yang W; Song W; Li J; Zhang X Chemosphere; 2020 Jun; 249():126134. PubMed ID: 32058136 [TBL] [Abstract][Full Text] [Related]
13. Thermophilic bioleaching of heavy metals from waste sludge using response surface methodology. Chen SY; Chen WH J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(9):1094-104. PubMed ID: 23573930 [TBL] [Abstract][Full Text] [Related]
14. Electrodialytic treatment for metal removal from sewage sludge ash from fluidized bed combustion. Pazos M; Kirkelund GM; Ottosen LM J Hazard Mater; 2010 Apr; 176(1-3):1073-8. PubMed ID: 20034740 [TBL] [Abstract][Full Text] [Related]
15. Characterization of an indigenous iron-oxidizing bacterium and its effectiveness in bioleaching heavy metals from anaerobically digested sewage sludge. Gu XY; Wong JW Environ Technol; 2004 Aug; 25(8):889-97. PubMed ID: 15366556 [TBL] [Abstract][Full Text] [Related]
16. Phosphorus recycling in sewage treatment plants with biological phosphorus removal. Heinzmann B Water Sci Technol; 2005; 52(10-11):543-8. PubMed ID: 16459832 [TBL] [Abstract][Full Text] [Related]
17. Effect of anaerobic digestion and initial pH on metal bioleaching from sewage sludge. Villar LD; Garcia O J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(2):211-22. PubMed ID: 16423726 [TBL] [Abstract][Full Text] [Related]
18. Effects of sulfur dosage and inoculum size on pilot-scale thermophilic bioleaching of heavy metals from sewage sludge. Chen SY; Cheng YK Chemosphere; 2019 Nov; 234():346-355. PubMed ID: 31228836 [TBL] [Abstract][Full Text] [Related]
19. [Isolation of heterotrophic microorganism and its role in bioleaching of heavy metals from tannery sludge]. Wang SM; Zhou LX; Huang FY; Fang D Huan Jing Ke Xue; 2004 Sep; 25(5):153-7. PubMed ID: 15623044 [TBL] [Abstract][Full Text] [Related]
20. Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans. Naresh Kumar R; Nagendran R J Hazard Mater; 2009 Sep; 169(1-3):1119-26. PubMed ID: 19464109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]