BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 19303211)

  • 21. Mixed versus layered multi-media filter for simultaneous removal of nutrients and heavy metals from urban stormwater runoff.
    Reddy KR; Dastgheibi S; Cameselle C
    Environ Sci Pollut Res Int; 2021 Feb; 28(6):7574-7585. PubMed ID: 33034857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal sorption by peat and algae treated peat: kinetics and factors affecting the process.
    Lourie E; Gjengedal E
    Chemosphere; 2011 Oct; 85(5):759-64. PubMed ID: 21788059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of some heavy metal cations by synthetic resin purolite C100.
    Abo-Farha SA; Abdel-Aal AY; Ashour IA; Garamon SE
    J Hazard Mater; 2009 Sep; 169(1-3):190-4. PubMed ID: 19403237
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-performance, superparamagnetic, nanoparticle-based heavy metal sorbents for removal of contaminants from natural waters.
    Warner CL; Addleman RS; Cinson AD; Droubay TC; Engelhard MH; Nash MA; Yantasee W; Warner MG
    ChemSusChem; 2010 Jun; 3(6):749-57. PubMed ID: 20468024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of some heavy metals ions from wastewater by copolymer of iron and aluminum impregnated with active silica derived from rice husk ash.
    Abo-El-Enein SA; Eissa MA; Diafullah AA; Rizk MA; Mohamed FM
    J Hazard Mater; 2009 Dec; 172(2-3):574-9. PubMed ID: 19709808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of toxic heavy metals by iron-coated starfish.
    Yang JK; Yu MR; Lee SM
    Water Sci Technol; 2007; 56(9):51-7. PubMed ID: 18025731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Zeolite formation from coal fly ash and heavy metal ion removal characteristics of thus-obtained Zeolite X in multi-metal systems.
    Jha VK; Nagae M; Matsuda M; Miyake M
    J Environ Manage; 2009 Jun; 90(8):2507-14. PubMed ID: 19233542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Competitive sorption of Cd, Cr, Cu, Ni, Pb and Zn from stormwater runoff by five low-cost sorbents; Effects of co-contaminants, humic acid, salinity and pH.
    Esfandiar N; Suri R; McKenzie ER
    J Hazard Mater; 2022 Feb; 423(Pt A):126938. PubMed ID: 34474369
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni(2+), Cu(2+), Cd(2+) and Pb(2+).
    Jha VK; Matsuda M; Miyake M
    J Hazard Mater; 2008 Dec; 160(1):148-53. PubMed ID: 18417279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modification of rice hull and sawdust sorptive characteristics for remove heavy metals from synthetic solutions and wastewater.
    Asadi F; Shariatmadari H; Mirghaffari N
    J Hazard Mater; 2008 Jun; 154(1-3):451-8. PubMed ID: 18054431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium.
    Chen AH; Yang CY; Chen CY; Chen CY; Chen CW
    J Hazard Mater; 2009 Apr; 163(2-3):1068-75. PubMed ID: 18774220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of constructed wetland for the removal of heavy metals from industrial wastewater.
    Khan S; Ahmad I; Shah MT; Rehman S; Khaliq A
    J Environ Manage; 2009 Aug; 90(11):3451-7. PubMed ID: 19535201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of metal ions from aqueous solutions by sorption onto rice bran.
    Montanher SF; Oliveira EA; Rollemberg MC
    J Hazard Mater; 2005 Jan; 117(2-3):207-11. PubMed ID: 15629578
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Peat filter performance under changing environmental conditions.
    Kalmykova Y; Strömvall AM; Rauch S; Morrison G
    J Hazard Mater; 2009 Jul; 166(1):389-93. PubMed ID: 19117671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Governing factors for motor oil removal from water with different sorption materials.
    Rajaković-Ognjanović V; Aleksić G; Rajaković Lj
    J Hazard Mater; 2008 Jun; 154(1-3):558-63. PubMed ID: 18060689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removal of some heavy metals by CKD leachate.
    Zaki NG; Khattab IA; Abd El-Monem NM
    J Hazard Mater; 2007 Aug; 147(1-2):21-7. PubMed ID: 17275181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting metals partitioning in wastewater treatment plant influents.
    Wang J; Huang CP; Allen HE
    Water Res; 2006 Apr; 40(7):1333-40. PubMed ID: 16540143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion.
    Pan BC; Zhang QR; Zhang WM; Pan BJ; Du W; Lv L; Zhang QJ; Xu ZW; Zhang QX
    J Colloid Interface Sci; 2007 Jun; 310(1):99-105. PubMed ID: 17336317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natural Jordanian zeolite: removal of heavy metal ions from water samples using column and batch methods.
    Baker HM; Massadeh AM; Younes HA
    Environ Monit Assess; 2009 Oct; 157(1-4):319-30. PubMed ID: 18830802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of calcium oxalate-bromopyrogallol red inclusion sorbent and application to treatment of cationic dye and heavy metal wastewaters.
    Wang HY; Gao HW
    Environ Sci Pollut Res Int; 2009 May; 16(3):339-47. PubMed ID: 18998184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.