BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 19303362)

  • 1. Degenerative diseases, oxidative stress and cytochrome c oxidase function.
    Kadenbach B; Ramzan R; Vogt S
    Trends Mol Med; 2009 Apr; 15(4):139-47. PubMed ID: 19303362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New control of mitochondrial membrane potential and ROS formation--a hypothesis.
    Lee I; Bender E; Arnold S; Kadenbach B
    Biol Chem; 2001 Dec; 382(12):1629-36. PubMed ID: 11843176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of mitochondrial membrane potential in ischemic heart failure.
    Kadenbach B; Ramzan R; Moosdorf R; Vogt S
    Mitochondrion; 2011 Sep; 11(5):700-6. PubMed ID: 21703366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial dysfunction in a neural cell model of spinal muscular atrophy.
    Acsadi G; Lee I; Li X; Khaidakov M; Pecinova A; Parker GC; Hüttemann M
    J Neurosci Res; 2009 Sep; 87(12):2748-56. PubMed ID: 19437551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial complex I defect induces ROS release and degeneration in trabecular meshwork cells of POAG patients: protection by antioxidants.
    He Y; Leung KW; Zhang YH; Duan S; Zhong XF; Jiang RZ; Peng Z; Tombran-Tink J; Ge J
    Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1447-58. PubMed ID: 18385062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supplemental ascorbate or alpha-tocopherol induces cell death in Cu-deficient HL-60 cells.
    Raymond LJ; Johnson WT
    Exp Biol Med (Maywood); 2004 Oct; 229(9):885-94. PubMed ID: 15388883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GAPDH: the missing link between glycolysis and mitochondrial oxidative phosphorylation?
    Ramzan R; Weber P; Linne U; Vogt S
    Biochem Soc Trans; 2013 Oct; 41(5):1294-7. PubMed ID: 24059522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria-dependent reactive oxygen species-mediated programmed cell death induced by 3,3'-diindolylmethane through inhibition of F0F1-ATP synthase in unicellular protozoan parasite Leishmania donovani.
    Roy A; Ganguly A; BoseDasgupta S; Das BB; Pal C; Jaisankar P; Majumder HK
    Mol Pharmacol; 2008 Nov; 74(5):1292-307. PubMed ID: 18703668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of cytochrome c oxidase by adenylic nucleotides. Is oxidative phosphorylation feedback regulated by its end-products?
    Beauvoit B; Rigoulet M
    IUBMB Life; 2001; 52(3-5):143-52. PubMed ID: 11798026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial generation of free radicals and hypoxic signaling.
    Poyton RO; Ball KA; Castello PR
    Trends Endocrinol Metab; 2009 Sep; 20(7):332-40. PubMed ID: 19733481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase.
    Ramzan R; Staniek K; Kadenbach B; Vogt S
    Biochim Biophys Acta; 2010 Sep; 1797(9):1672-80. PubMed ID: 20599681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High efficiency versus maximal performance--the cause of oxidative stress in eukaryotes: a hypothesis.
    Kadenbach B; Ramzan R; Vogt S
    Mitochondrion; 2013 Jan; 13(1):1-6. PubMed ID: 23178790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting Kadenbach: Electron flux rate through cytochrome c-oxidase determines the ATP-inhibitory effect and subsequent production of ROS.
    Vogt S; Rhiel A; Weber P; Ramzan R
    Bioessays; 2016 Jun; 38(6):556-67. PubMed ID: 27171124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two components in pathogenic mechanism of mitochondrial ATPase deficiency: energy deprivation and ROS production.
    Mrácek T; Pecina P; Vojtísková A; Kalous M; Sebesta O; Houstek J
    Exp Gerontol; 2006 Jul; 41(7):683-7. PubMed ID: 16581217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome c oxidase and its role in neurodegeneration and neuroprotection.
    Arnold S
    Adv Exp Med Biol; 2012; 748():305-39. PubMed ID: 22729864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species.
    Zuckerbraun BS; Chin BY; Bilban M; d'Avila JC; Rao J; Billiar TR; Otterbein LE
    FASEB J; 2007 Apr; 21(4):1099-106. PubMed ID: 17264172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of cytochrome c oxidase subunits Va and Vb in the regulation of cancer cell metabolism by Bcl-2.
    Chen ZX; Pervaiz S
    Cell Death Differ; 2010 Mar; 17(3):408-20. PubMed ID: 19834492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial dysfunction by complex II inhibition delays overall cell cycle progression via reactive oxygen species production.
    Byun HO; Kim HY; Lim JJ; Seo YH; Yoon G
    J Cell Biochem; 2008 Aug; 104(5):1747-59. PubMed ID: 18395845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of mitochondrial oxidative stress in astrocytes by nitric oxide precedes disruption of energy metabolism.
    Jacobson J; Duchen MR; Hothersall J; Clark JB; Heales SJ
    J Neurochem; 2005 Oct; 95(2):388-95. PubMed ID: 16104850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecular switch in cytochrome C oxidase turns on thermogenesis in heart at low work load.
    Belyanovich L; Arnold S; Köhnke D; Kadenbach B
    Biochem Biophys Res Commun; 1996 Dec; 229(2):485-7. PubMed ID: 8954924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.