These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19303805)

  • 41. Motion compensation for MRI-compatible patient-mounted needle guide device: estimation of targeting accuracy in MRI-guided kidney cryoablations.
    Tokuda J; Chauvin L; Ninni B; Kato T; King F; Tuncali K; Hata N
    Phys Med Biol; 2018 Apr; 63(8):085010. PubMed ID: 29546845
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of visual and haptic feedback on computer-assisted needle insertion.
    Gerovich O; Marayong P; Okamura AM
    Comput Aided Surg; 2004; 9(6):243-9. PubMed ID: 16112974
    [TBL] [Abstract][Full Text] [Related]  

  • 43. EVALUATION OF NEEDLE DRIVER DESIGNS FOR ROBOT-ASSISTED NEEDLE INSERTIONS UNDER MRI GUIDANCE.
    Liu G; Wang Y; Li G; Cleary K; Iordachita I
    Int Mech Eng Congress Expo; 2022; 4():. PubMed ID: 37408734
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Teleoperation of steerable flexible needles by combining kinesthetic and vibratory feedback.
    Pacchierotti C; Abayazid M; Misra S; Prattichizzo D
    IEEE Trans Haptics; 2014; 7(4):551-6. PubMed ID: 25265614
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of Grip-Force, Contact, and Acceleration Feedback on a Teleoperated Pick-and-Place Task.
    Khurshid RP; Fitter NT; Fedalei EA; Kuchenbecker KJ
    IEEE Trans Haptics; 2017; 10(1):40-53. PubMed ID: 27249838
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Challenges in developing a magnetic resonance-compatible haptic hand-controller for neurosurgical training.
    Maddahi Y; Zareinia K; Tomanek B; Sutherland GR
    Proc Inst Mech Eng H; 2018 Oct; ():954411918806934. PubMed ID: 30355029
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MRI-guided radiofrequency ablation of breast cancer: preliminary clinical experience.
    van den Bosch M; Daniel B; Rieke V; Butts-Pauly K; Kermit E; Jeffrey S
    J Magn Reson Imaging; 2008 Jan; 27(1):204-8. PubMed ID: 18050333
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A High Performance Tactile Feedback Display and Its Integration in Teleoperation.
    Sarakoglou I; Garcia-Hernandez N; Tsagarakis NG; Caldwell DG
    IEEE Trans Haptics; 2012; 5(3):252-63. PubMed ID: 26964111
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterizing Limits of Vision-Based Force Feedback in Simulated Surgical Tool-Tissue Interaction.
    Huang K; Chitrakar D; Mitra R; Subedi D; Su YH
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4903-4908. PubMed ID: 33019088
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Virtual wall-based haptic-guided teleoperated surgical robotic system for single-port brain tumor removal surgery.
    Seung S; Choi H; Jang J; Kim YS; Park JO; Park S; Ko SY
    Proc Inst Mech Eng H; 2017 Jan; 231(1):3-19. PubMed ID: 27856790
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Master device for teleoperated needle insertion-type interventional robotic system.
    Woo HS; Cho JH; Kim CS; Lee HJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4849-52. PubMed ID: 26737379
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The impact of haptic feedback quality on the performance of teleoperated assembly tasks.
    Wildenbeest JG; Abbink DA; Heemskerk CJ; van der Helm FC; Boessenkool H
    IEEE Trans Haptics; 2013; 6(2):242-52. PubMed ID: 24808307
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design of an end-effector for robot-assisted ultrasound-guided breast biopsies.
    Welleweerd MK; Siepel FJ; Groenhuis V; Veltman J; Stramigioli S
    Int J Comput Assist Radiol Surg; 2020 Apr; 15(4):681-690. PubMed ID: 32100177
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design and Calibration of a New 6 DOF Haptic Device.
    Qin H; Song A; Liu Y; Jiang G; Zhou B
    Sensors (Basel); 2015 Dec; 15(12):31293-313. PubMed ID: 26690449
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design and implementation of visual-haptic assistive control system for virtual rehabilitation exercise and teleoperation manipulation.
    Veras EJ; De Laurentis KJ; Dubey R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4290-3. PubMed ID: 19163661
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Performance evaluation of a robot-assisted catheter operating system with haptic feedback.
    Song Y; Guo S; Yin X; Zhang L; Hirata H; Ishihara H; Tamiya T
    Biomed Microdevices; 2018 Jun; 20(2):50. PubMed ID: 29926195
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An MR-Conditional Needle Driver for Robot-Assisted Spinal Injections: Design Modifications and Evaluations.
    Wang Y; Liu G; Li G; Cleary K; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3307-3312. PubMed ID: 36086159
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of Skin Deformation Tactile Feedback for Teleoperated Surgical Tasks.
    Quek ZF; Provancher WR; Okamura AM
    IEEE Trans Haptics; 2019; 12(2):102-113. PubMed ID: 30281480
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Multilayered, Lesion-Embedded Ultrasound Breast Phantom with Realistic Visual and Haptic Feedback for Needle Biopsy.
    Ng SY; Lin CL
    Ultrasound Med Biol; 2022 Aug; 48(8):1468-1483. PubMed ID: 35534303
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A task-specific analysis of the benefit of haptic shared control during telemanipulation.
    Boessenkool H; Abbink DA; Heemskerk CJ; van der Helm FC; Wildenbeest JG
    IEEE Trans Haptics; 2013; 6(1):2-12. PubMed ID: 24808263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.