These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 19303923)
21. The effects of acute or repeated cocaine administration on nerve terminal glutamate within the rat mesolimbic system. Kozell LB; Meshul CK Neuroscience; 2001; 106(1):15-25. PubMed ID: 11564413 [TBL] [Abstract][Full Text] [Related]
22. Effects of 5-HT3 receptor-selective agents on locomotor activity in rats following injection into the nucleus accumbens and the ventral tegmental area. Gillies DM; Mylecharane EJ; Jackson DM Eur J Pharmacol; 1996 May; 303(1-2):1-12. PubMed ID: 8804905 [TBL] [Abstract][Full Text] [Related]
23. Correlation between the discharge rate of non-dopamine neurons in substantia nigra and ventral tegmental area and the motor activity induced by apomorphine. Olds ME Neuroscience; 1988 Feb; 24(2):465-76. PubMed ID: 3362349 [TBL] [Abstract][Full Text] [Related]
25. Chronic cocaine administration decreases the functional coupling of GABA(B) receptors in the rat ventral tegmental area as measured by baclofen-stimulated 35S-GTPgammaS binding. Kushner SA; Unterwald EM Life Sci; 2001 Jul; 69(9):1093-102. PubMed ID: 11508652 [TBL] [Abstract][Full Text] [Related]
26. The impact of a competitive and a non-competitive NMDA receptor antagonist on dopaminergic neurotransmission in the rat ventral tegmental area and substantia nigra. Wedzony K; Czyrak A; Maćkowiak M; Fijał K Naunyn Schmiedebergs Arch Pharmacol; 1996 Apr; 353(5):517-27. PubMed ID: 8740145 [TBL] [Abstract][Full Text] [Related]
27. Inhibitory effects of dopamine and methylenedioxymethamphetamine (MDMA) on glutamate-evoked firing of nucleus accumbens and caudate/putamen cells are enhanced following cocaine self-administration. White SR; Harris GC; Imel KM; Wheaton MJ Brain Res; 1995 May; 681(1-2):167-76. PubMed ID: 7552276 [TBL] [Abstract][Full Text] [Related]
28. Involvement of sigma receptors in the modulation of the glutamatergic/NMDA neurotransmission in the dopaminergic systems. Gronier B; Debonnel G Eur J Pharmacol; 1999 Mar; 368(2-3):183-96. PubMed ID: 10193654 [TBL] [Abstract][Full Text] [Related]
29. Locomotion, stereotypy, and dopamine D1 receptors after chronic "binge" cocaine in C57BL/6J and 129/J mice. Schlussman SD; Zhang Y; Kane S; Stewart CL; Ho A; Kreek MJ Pharmacol Biochem Behav; 2003 Apr; 75(1):123-31. PubMed ID: 12759120 [TBL] [Abstract][Full Text] [Related]
30. Dopamine-dependent responses to cocaine depend on corticotropin-releasing factor receptor subtypes. Lu L; Liu Z; Huang M; Zhang Z J Neurochem; 2003 Mar; 84(6):1378-86. PubMed ID: 12614338 [TBL] [Abstract][Full Text] [Related]
31. Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the "shell" as compared with the "core" of the rat nucleus accumbens. Pontieri FE; Tanda G; Di Chiara G Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12304-8. PubMed ID: 8618890 [TBL] [Abstract][Full Text] [Related]
32. 6-Hydroxydopamine lesion of ventral pallidum blocks acquisition of place preference conditioning to cocaine. Gong W; Neill D; Justice JB Brain Res; 1997 Apr; 754(1-2):103-12. PubMed ID: 9134965 [TBL] [Abstract][Full Text] [Related]
33. Amphetamine, cocaine, and fencamfamine: relationship between locomotor and stereotypy response profiles and caudate and accumbens dopamine dynamics. Kuczenski R; Segal DS; Aizenstein ML J Neurosci; 1991 Sep; 11(9):2703-12. PubMed ID: 1715389 [TBL] [Abstract][Full Text] [Related]
34. In vivo neurochemical and behavioural effects of intracerebrally administered neurotensin and D-Trp11-neurotensin on mesolimbic and nigrostriatal dopaminergic function in the rat. Ford AP; Marsden CA Brain Res; 1990 Nov; 534(1-2):243-50. PubMed ID: 2073584 [TBL] [Abstract][Full Text] [Related]
35. Differential regulation of the mesoaccumbens dopamine circuit by serotonin2C receptors in the ventral tegmental area and the nucleus accumbens: an in vivo microdialysis study with cocaine. Navailles S; Moison D; Cunningham KA; Spampinato U Neuropsychopharmacology; 2008 Jan; 33(2):237-46. PubMed ID: 17429406 [TBL] [Abstract][Full Text] [Related]
36. Active versus passive cocaine administration: differences in the neuroadaptive changes in the brain dopaminergic system. Stefański R; Ziółkowska B; Kuśmider M; Mierzejewski P; Wyszogrodzka E; Kołomańska P; Dziedzicka-Wasylewska M; Przewłocki R; Kostowski W Brain Res; 2007 Jul; 1157():1-10. PubMed ID: 17544385 [TBL] [Abstract][Full Text] [Related]
37. The dorsomedial shell of the nucleus accumbens facilitates cocaine-induced locomotor activity during the induction of behavioral sensitization. Todtenkopf MS; Carreiras T; Melloni RH; Stellar JR Behav Brain Res; 2002 Apr; 131(1-2):9-16. PubMed ID: 11844568 [TBL] [Abstract][Full Text] [Related]
38. Microinjection of cocaine into the nucleus accumbens elicits locomotor activation in the rat. Delfs JM; Schreiber L; Kelley AE J Neurosci; 1990 Jan; 10(1):303-10. PubMed ID: 2299396 [TBL] [Abstract][Full Text] [Related]
39. Neutralization of neutrophin-3 in the ventral tegmental area or nucleus accumbens differentially modulates cocaine-induced behavioral plasticity in rats. Freeman AY; Pierce RC Synapse; 2002 Nov; 46(2):57-65. PubMed ID: 12211082 [TBL] [Abstract][Full Text] [Related]
40. Effect of ventral tegmental 6-hydroxydopamine lesions on the locomotor stimulant action of nicotine in rats. Louis M; Clarke PB Neuropharmacology; 1998 Dec; 37(12):1503-13. PubMed ID: 9886673 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]