These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 19304499)
1. Magnetically responsive nanoparticles for drug delivery applications using low magnetic field strengths. McGill SL; Cuylear CL; Adolphi NL; Osiński M; Smyth HD IEEE Trans Nanobioscience; 2009 Mar; 8(1):33-42. PubMed ID: 19304499 [TBL] [Abstract][Full Text] [Related]
2. Iron-oxide embedded solid lipid nanoparticles for magnetically controlled heating and drug delivery. Hsu MH; Su YC Biomed Microdevices; 2008 Dec; 10(6):785. PubMed ID: 18561029 [TBL] [Abstract][Full Text] [Related]
3. Drug releasing nanoplatforms activated by alternating magnetic fields. Mertz D; Sandre O; Bégin-Colin S Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1617-1641. PubMed ID: 28238734 [TBL] [Abstract][Full Text] [Related]
4. Using polymers to make up magnetic nanoparticles for biomedicine. Chanana M; Mao Z; Wang D J Biomed Nanotechnol; 2009 Dec; 5(6):652-68. PubMed ID: 20201227 [TBL] [Abstract][Full Text] [Related]
5. Remote magnetic targeting of iron oxide nanoparticles for cardiovascular diagnosis and therapeutic drug delivery: where are we now? Bietenbeck M; Florian A; Faber C; Sechtem U; Yilmaz A Int J Nanomedicine; 2016; 11():3191-203. PubMed ID: 27486321 [TBL] [Abstract][Full Text] [Related]
6. Nanomedicine for cancer: lipid-based nanostructures for drug delivery and monitoring. Namiki Y; Fuchigami T; Tada N; Kawamura R; Matsunuma S; Kitamoto Y; Nakagawa M Acc Chem Res; 2011 Oct; 44(10):1080-93. PubMed ID: 21786832 [TBL] [Abstract][Full Text] [Related]
7. Rational synthesis of magnetic thermosensitive microcontainers as targeting drug carriers. Chen LB; Zhang F; Wang CC Small; 2009 Mar; 5(5):621-8. PubMed ID: 19189322 [TBL] [Abstract][Full Text] [Related]
8. A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release. Banerjee SS; Chen DH Nanotechnology; 2009 May; 20(18):185103. PubMed ID: 19420604 [TBL] [Abstract][Full Text] [Related]
9. Magnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release. Wang H; Yi J; Mukherjee S; Banerjee P; Zhou S Nanoscale; 2014 Nov; 6(21):13001-11. PubMed ID: 25243783 [TBL] [Abstract][Full Text] [Related]
10. Preparation of Porous γ-Fe2O3@mWO3 Multifunctional Nanoparticles for Drug Loading and Controlled Release. Peng H; Huang Q; Wu T; Wen J; He H Curr Drug Deliv; 2018 Feb; 15(2):278-285. PubMed ID: 28240176 [TBL] [Abstract][Full Text] [Related]
11. Water dispersible Fe3O4 nanoparticles carrying doxorubicin for cancer therapy. Jayakumar OD; Ganguly R; Tyagi AK; Chandrasekharan DK; Nair CK J Nanosci Nanotechnol; 2009 Nov; 9(11):6344-8. PubMed ID: 19908532 [TBL] [Abstract][Full Text] [Related]
12. A Smart Magnetically Active Nanovehicle for on-Demand Targeted Drug Delivery: Where van der Waals Force Balances the Magnetic Interaction. Panja S; Maji S; Maiti TK; Chattopadhyay S ACS Appl Mater Interfaces; 2015 Nov; 7(43):24229-41. PubMed ID: 26458134 [TBL] [Abstract][Full Text] [Related]
13. Particle size, magnetic field, and blood velocity effects on particle retention in magnetic drug targeting. Cherry EM; Maxim PG; Eaton JK Med Phys; 2010 Jan; 37(1):175-82. PubMed ID: 20175479 [TBL] [Abstract][Full Text] [Related]
14. Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Vangijzegem T; Stanicki D; Laurent S Expert Opin Drug Deliv; 2019 Jan; 16(1):69-78. PubMed ID: 30496697 [TBL] [Abstract][Full Text] [Related]
15. Size control of magnetic carbon nanoparticles for drug delivery. Oh WK; Yoon H; Jang J Biomaterials; 2010 Feb; 31(6):1342-8. PubMed ID: 19878989 [TBL] [Abstract][Full Text] [Related]
16. Effect of an oscillating magnetic field on the release properties of magnetic collagen gels. De Paoli VM; De Paoli Lacerda SH; Spinu L; Ingber B; Rosenzweig Z; Rosenzweig N Langmuir; 2006 Jun; 22(13):5894-9. PubMed ID: 16768526 [TBL] [Abstract][Full Text] [Related]
17. Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine. Du JZ; Li HJ; Wang J Acc Chem Res; 2018 Nov; 51(11):2848-2856. PubMed ID: 30346728 [TBL] [Abstract][Full Text] [Related]
18. A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Namiki Y; Namiki T; Yoshida H; Ishii Y; Tsubota A; Koido S; Nariai K; Mitsunaga M; Yanagisawa S; Kashiwagi H; Mabashi Y; Yumoto Y; Hoshina S; Fujise K; Tada N Nat Nanotechnol; 2009 Sep; 4(9):598-606. PubMed ID: 19734934 [TBL] [Abstract][Full Text] [Related]
19. Preferential magnetic targeting of carbon nanotubes to cancer sites: noninvasive tracking using MRI in a murine breast cancer model. Al Faraj A; Shaik AS; Al Sayed B Nanomedicine (Lond); 2015; 10(6):931-48. PubMed ID: 25867858 [TBL] [Abstract][Full Text] [Related]
20. Iron oxide-doped niosomes as drug carriers for magnetically targeted drug delivery. Juneja R; Roy I Int J Nanomedicine; 2018; 13(T-NANO 2014 Abstracts):7-9. PubMed ID: 29593388 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]