BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 193045)

  • 1. Does cyclic GMP mediate the negative inotropic effect of acetylcholine in the heart?
    Nawrath H
    Nature; 1977 May; 267(5606):72-4. PubMed ID: 193045
    [No Abstract]   [Full Text] [Related]  

  • 2. 8-bromo-guanosine-3',5' -monophosphate mimics the effect of acetylcholine on slow response action potential and contractile force in mammalian atrial myocardium.
    Kohlhardt M; Haap K
    J Mol Cell Cardiol; 1978 Jun; 10(6):573-86. PubMed ID: 211240
    [No Abstract]   [Full Text] [Related]  

  • 3. Role of cyclic GMP as a mediator of the negative inotropic effect of acetylcholine in the perfused rat heart.
    George WJ; Kadowitz PJ; Wilkerson RD
    Recent Adv Stud Cardiac Struct Metab; 1973; 3():331-9. PubMed ID: 4377605
    [No Abstract]   [Full Text] [Related]  

  • 4. [Cellular mechanism of inotropic action of acetylcholine in the heart].
    Lewartowski B
    Acta Physiol Pol; 1976; 27(6):93-7. PubMed ID: 1020677
    [No Abstract]   [Full Text] [Related]  

  • 5. Are increases in cyclic GMP levels responsible for the effects of acetylcholine on the transmembrane action potential of cat atrium?
    Diamond J; Ten Eick RE; Trapani AJ
    Proc West Pharmacol Soc; 1984; 27():27-30. PubMed ID: 6093131
    [No Abstract]   [Full Text] [Related]  

  • 6. Suggestive evidence for the activation of an electrogenic sodium pump in stimulated rat atria: apparent discrepancy between the pump inhibition and the positive inotropic response induced by ouabain.
    Diacono J
    J Mol Cell Cardiol; 1979 Jan; 11(1):5-30. PubMed ID: 423256
    [No Abstract]   [Full Text] [Related]  

  • 7. Are increases in cyclic GMP levels responsible for the negative inotropic effects of acetylcholine in the heart?
    Diamond J; Ten Eick RE; Trapani AJ
    Biochem Biophys Res Commun; 1977 Dec; 79(3):912-8. PubMed ID: 202278
    [No Abstract]   [Full Text] [Related]  

  • 8. Papaverine enhances the negative inotropic effect of acetylcholine in rat auricles.
    Nawrath H
    Experientia; 1978 Jul; 34(7):859-60. PubMed ID: 208854
    [No Abstract]   [Full Text] [Related]  

  • 9. Evidence that cyclic GMP may regulate cyclic AMP metabolism in the isolated frog ventricle.
    Flitney FW; Singh J
    J Mol Cell Cardiol; 1981 Nov; 13(11):963-79. PubMed ID: 6275088
    [No Abstract]   [Full Text] [Related]  

  • 10. Inotropic responses of the frog ventricle to dibutyryl cyclic AMP and 8-bromo cyclic GMP and related changes in endogenous cyclic nucleotide levels.
    Singh J; Flitney FW
    Biochem Pharmacol; 1981 Jun; 30(12):1475-81. PubMed ID: 6268101
    [No Abstract]   [Full Text] [Related]  

  • 11. Oppositional effects of acetylcholine and isoproterenol on isometric tension and cyclic nucleotide concentrations in rabbit atria.
    George WJ; Ignarro LJ; Paddock RJ; White L; Kadowitz PJ
    J Cyclic Nucleotide Res; 1975; 1(5):339-47. PubMed ID: 178695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylcholine's inhibitory effect on the calcium-dependent depolarization in the heart cells of a reptile (Lacerta sicula campestris). Preliminary notes.
    Cedrini L; Alloatti G
    Boll Soc Ital Biol Sper; 1979 Jan; 55(1):79-85. PubMed ID: 475925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Inotropic action of cardiac glycosides in light of current conceptions of electromechanical coupling in the myocardium].
    Izakov VF; Markhasin VS; Tsyv'ian PB
    Usp Fiziol Nauk; 1979; 10(2):73-6. PubMed ID: 224611
    [No Abstract]   [Full Text] [Related]  

  • 14. Dissociation between the electrophysiological properties and total tissue cyclic guanosine monophosphate content of guinea pig atria.
    Mirro MJ; Bailey JC; Watanabe AM
    Circ Res; 1979 Aug; 45(2):225-33. PubMed ID: 221131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the effects of acetylcholine on the contractile properties and Ca2+ transients in ferret ventricular muscles.
    Hongo K; Tanaka E; Kurihara S
    J Physiol; 1993 Feb; 461():185-99. PubMed ID: 8394424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for opposing influences of cyclic GMP and cyclic AMP on force of contraction in mammalian myocardium.
    Nawrath H
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():419-22. PubMed ID: 201992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosine inhibits the positive inotropic effect of 3-isobutyl-1-methylxanthine in papillary muscles without effect on cyclic AMP or cyclic GMP.
    Böhm M; Brückner R; Neumann J; Nose M; Schmitz W; Scholz H
    Br J Pharmacol; 1988 Apr; 93(4):729-38. PubMed ID: 2455577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of thiopental on tension development, action potential, and exchange of calcium and potassium in rabbit ventricular myocardium.
    Frankl WS; Poole-Wilson PA
    J Cardiovasc Pharmacol; 1981; 3(3):554-65. PubMed ID: 6168836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valinomycin blockade of myocardial slow channels is reversed by high glucose.
    Vogel S; Sperelakis N
    Am J Physiol; 1978 Jul; 235(1):H46-51. PubMed ID: 677328
    [No Abstract]   [Full Text] [Related]  

  • 20. Muscarinic stimulation of cardiac guanylate cyclase.
    George WJ; Ignarro LJ; White LE
    Recent Adv Stud Cardiac Struct Metab; 1975; 7():381-90. PubMed ID: 5759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.