These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19304846)

  • 1. Redundancy of enzymes for formaldehyde detoxification in Pseudomonas putida.
    Roca A; Rodríguez-Herva JJ; Ramos JL
    J Bacteriol; 2009 May; 191(10):3367-74. PubMed ID: 19304846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo role of FdhD and FdmE in formate metabolism in Pseudomonas putida: Redundancy and expression in the stationary phase.
    Roca A; Ramos JL
    Environ Microbiol Rep; 2009 Jun; 1(3):208-13. PubMed ID: 23765795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core and auxiliary functions of one-carbon metabolism in
    Turlin J; Puiggené Ò; Donati S; Wirth NT; Nikel PI
    mSystems; 2023 Jun; 8(3):e0000423. PubMed ID: 37273222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C1 metabolism in Corynebacterium glutamicum: an endogenous pathway for oxidation of methanol to carbon dioxide.
    Witthoff S; Mühlroth A; Marienhagen J; Bott M
    Appl Environ Microbiol; 2013 Nov; 79(22):6974-83. PubMed ID: 24014532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological responses of Pseudomonas putida to formaldehyde during detoxification.
    Roca A; Rodríguez-Herva JJ; Duque E; Ramos JL
    Microb Biotechnol; 2008 Mar; 1(2):158-69. PubMed ID: 21261833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and high-level expression of the glutathione-independent formaldehyde dehydrogenase gene from Pseudomonas putida.
    Ito K; Takahashi M; Yoshimoto T; Tsuru D
    J Bacteriol; 1994 May; 176(9):2483-91. PubMed ID: 8169197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of formaldehyde dehydrogenase from Pseudomonas aeruginosa: the binary complex with the cofactor NAD+.
    Liao Y; Chen S; Wang D; Zhang W; Wang S; Ding J; Wang Y; Cai L; Ran X; Wang X; Zhu H
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Sep; 69(Pt 9):967-72. PubMed ID: 23989142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dihydroxyacetone detoxification in Saccharomyces cerevisiae involves formaldehyde dissimilation.
    Molin M; Blomberg A
    Mol Microbiol; 2006 May; 60(4):925-38. PubMed ID: 16677304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence of the gene for a NAD(P)-dependent formaldehyde dehydrogenase (class III alcohol dehydrogenase) from a marine methanotroph Methylobacter marinus A45.
    Speer BS; Chistoserdova L; Lidstrom ME
    FEMS Microbiol Lett; 1994 Sep; 121(3):349-55. PubMed ID: 7926692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components.
    Böhm R; Sauter M; Böck A
    Mol Microbiol; 1990 Feb; 4(2):231-43. PubMed ID: 2187144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergic role of the two ars operons in arsenic tolerance in Pseudomonas putida KT2440.
    Fernández M; Udaondo Z; Niqui JL; Duque E; Ramos JL
    Environ Microbiol Rep; 2014 Oct; 6(5):483-9. PubMed ID: 25646541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of formaldehyde dehydrogenase from Pseudomonas putida: the structural origin of the tightly bound cofactor in nicotinoprotein dehydrogenases.
    Tanaka N; Kusakabe Y; Ito K; Yoshimoto T; Nakamura KT
    J Mol Biol; 2002 Nov; 324(3):519-33. PubMed ID: 12445786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis of structural genes for NAD(+)-dependent formate dehydrogenase in Saccharomyces cerevisiae.
    Overkamp KM; Kötter P; van der Hoek R; Schoondermark-Stolk S; Luttik MA; van Dijken JP; Pronk JT
    Yeast; 2002 Apr; 19(6):509-20. PubMed ID: 11921099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA sequence determination of the TOL plasmid (pWWO) xylGFJ genes of Pseudomonas putida: implications for the evolution of aromatic catabolism.
    Horn JM; Harayama S; Timmis KN
    Mol Microbiol; 1991 Oct; 5(10):2459-74. PubMed ID: 1791759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The artificial evolution of an enzyme by random mutagenesis: the development of formaldehyde dehydrogenase.
    Fujii Y; Yamasaki Y; Matsumoto M; Nishida H; Hada M; Ohkubo K
    Biosci Biotechnol Biochem; 2004 Aug; 68(8):1722-7. PubMed ID: 15322356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of Candida boidinii on methanol and the activity of methanol-degrading enzymes as affected from formaldehyde and methylformate.
    Aggelis G; Margariti N; Kralli C; Flouri F
    J Biotechnol; 2000 Jun; 80(2):119-25. PubMed ID: 10908792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional coupling between vanillate-O-demethylase and formaldehyde detoxification pathway.
    Hibi M; Sonoki T; Mori H
    FEMS Microbiol Lett; 2005 Dec; 253(2):237-42. PubMed ID: 16242864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic regulation of formate hydrogenlyase of Escherichia coli: role of the fhlA gene product as a transcriptional activator for a new regulatory gene, fhlB.
    Maupin JA; Shanmugam KT
    J Bacteriol; 1990 Sep; 172(9):4798-806. PubMed ID: 2118503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Chemical modification of the lysine residues of bacterial formate dehydrogenase].
    Popov VO; Tishkov VI; Daĭnichenko VV; Egorov AM
    Biokhimiia; 1983 May; 48(5):747-55. PubMed ID: 6409166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agr Quorum Sensing influences the Wood-Ljungdahl pathway in Clostridium autoethanogenum.
    Piatek P; Humphreys C; Raut MP; Wright PC; Simpson S; Köpke M; Minton NP; Winzer K
    Sci Rep; 2022 Jan; 12(1):411. PubMed ID: 35013405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.