BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 19305506)

  • 1. Filling kinetic gaps: dynamic modeling of metabolism where detailed kinetic information is lacking.
    Resendis-Antonio O
    PLoS One; 2009; 4(3):e4967. PubMed ID: 19305506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The stability and robustness of metabolic states: identifying stabilizing sites in metabolic networks.
    Grimbs S; Selbig J; Bulik S; Holzhütter HG; Steuer R
    Mol Syst Biol; 2007; 3():146. PubMed ID: 18004279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and Classification of Kinetic Patterns of Dynamic Metabolic Biomarkers in Physical Activity.
    Breit M; Netzer M; Weinberger KM; Baumgartner C
    PLoS Comput Biol; 2015 Aug; 11(8):e1004454. PubMed ID: 26317529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a metabolic reaction network from time-series data of metabolite concentrations.
    Sriyudthsak K; Shiraishi F; Hirai MY
    PLoS One; 2013; 8(1):e51212. PubMed ID: 23326311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An algorithm for the reduction of genome-scale metabolic network models to meaningful core models.
    Erdrich P; Steuer R; Klamt S
    BMC Syst Biol; 2015 Aug; 9():48. PubMed ID: 26286864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing kinetic models of metabolism at genome-scales: A review.
    Srinivasan S; Cluett WR; Mahadevan R
    Biotechnol J; 2015 Sep; 10(9):1345-59. PubMed ID: 26332243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting functional associations from metabolism using bi-partite network algorithms.
    Veeramani B; Bader JS
    BMC Syst Biol; 2010 Jul; 4():95. PubMed ID: 20630077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian kinetic modeling for tracer-based metabolomic data.
    Zhang X; Su Y; Lane AN; Stromberg AJ; Fan TWM; Wang C
    BMC Bioinformatics; 2023 Mar; 24(1):108. PubMed ID: 36949395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current state and challenges for dynamic metabolic modeling.
    Vasilakou E; Machado D; Theorell A; Rocha I; Nöh K; Oldiges M; Wahl SA
    Curr Opin Microbiol; 2016 Oct; 33():97-104. PubMed ID: 27472025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Description and analysis of metabolic connectivity and dynamics in the human red blood cell.
    Kauffman KJ; Pajerowski JD; Jamshidi N; Palsson BO; Edwards JS
    Biophys J; 2002 Aug; 83(2):646-62. PubMed ID: 12124254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BoostGAPFILL: improving the fidelity of metabolic network reconstructions through integrated constraint and pattern-based methods.
    Oyetunde T; Zhang M; Chen Y; Tang Y; Lo C
    Bioinformatics; 2017 Feb; 33(4):608-611. PubMed ID: 27797784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring branching pathways in genome-scale metabolic networks.
    Pitkänen E; Jouhten P; Rousu J
    BMC Syst Biol; 2009 Oct; 3():103. PubMed ID: 19874610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.
    Andreozzi S; Miskovic L; Hatzimanikatis V
    Metab Eng; 2016 Jan; 33():158-168. PubMed ID: 26474788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Network Modeling of Stem Cell Metabolism.
    Shen F; Cheek C; Chandrasekaran S
    Methods Mol Biol; 2019; 1975():305-320. PubMed ID: 31062316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MASSpy: Building, simulating, and visualizing dynamic biological models in Python using mass action kinetics.
    Haiman ZB; Zielinski DC; Koike Y; Yurkovich JT; Palsson BO
    PLoS Comput Biol; 2021 Jan; 17(1):e1008208. PubMed ID: 33507922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraction of elementary rate constants from global network analysis of E. coli central metabolism.
    Zhao J; Ridgway D; Broderick G; Kovalenko A; Ellison M
    BMC Syst Biol; 2008 May; 2():41. PubMed ID: 18462493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the size of the solution space of metabolic networks.
    Braunstein A; Mulet R; Pagnani A
    BMC Bioinformatics; 2008 May; 9():240. PubMed ID: 18489757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Top-down analysis of temporal hierarchy in biochemical reaction networks.
    Jamshidi N; Palsson BØ
    PLoS Comput Biol; 2008 Sep; 4(9):e1000177. PubMed ID: 18787685
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.