BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 19305510)

  • 21. Circadian periods of sensitivity for ramelteon on the onset of running-wheel activity and the peak of suprachiasmatic nucleus neuronal firing rhythms in C3H/HeN mice.
    Rawashdeh O; Hudson RL; Stepien I; Dubocovich ML
    Chronobiol Int; 2011 Feb; 28(1):31-8. PubMed ID: 21182402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suprachiasmatic nucleus: cell autonomy and network properties.
    Welsh DK; Takahashi JS; Kay SA
    Annu Rev Physiol; 2010; 72():551-77. PubMed ID: 20148688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substance p plays a critical role in photic resetting of the circadian pacemaker in the rat hypothalamus.
    Kim DY; Kang HC; Shin HC; Lee KJ; Yoon YW; Han HC; Na HS; Hong SK; Kim YI
    J Neurosci; 2001 Jun; 21(11):4026-31. PubMed ID: 11356889
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoperiod Modulates Fast Delayed Rectifier Potassium Currents in the Mammalian Circadian Clock.
    Farajnia S; Meijer JH; Michel S
    ASN Neuro; 2016 Oct; 8(5):. PubMed ID: 27697884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. N-Methyl-D-aspartate microinjected into the suprachiasmatic nucleus mimics the phase-shifting effects of light in the diurnal Nile grass rat (Arvicanthis niloticus).
    Novak CM; Albers HE
    Brain Res; 2002 Oct; 951(2):255-63. PubMed ID: 12270504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cryptochrome-deficient mice lack circadian electrical activity in the suprachiasmatic nuclei.
    Albus H; Bonnefont X; Chaves I; Yasui A; Doczy J; van der Horst GT; Meijer JH
    Curr Biol; 2002 Jul; 12(13):1130-3. PubMed ID: 12121621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phase differences between SCN neurons and their role in photoperiodic encoding; a simulation of ensemble patterns using recorded single unit electrical activity patterns.
    Rohling J; Meijer JH; VanderLeest HT; Admiraal J
    J Physiol Paris; 2006; 100(5-6):261-70. PubMed ID: 17628455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phase of the electrical activity rhythm in the SCN in vitro not influenced by preparation time.
    vanderLeest HT; Vansteensel MJ; Duindam H; Michel S; Meijer JH
    Chronobiol Int; 2009 Aug; 26(6):1075-89. PubMed ID: 19731107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Feeding and adrenal entrainment stimuli are both necessary for normal circadian oscillation of peripheral clocks in mice housed under different photoperiods.
    Ikeda Y; Sasaki H; Ohtsu T; Shiraishi T; Tahara Y; Shibata S
    Chronobiol Int; 2015 Mar; 32(2):195-210. PubMed ID: 25286135
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of photoperiod duration and light-dark transitions on entrainment of Per1 and Per2 gene and protein expression in subdivisions of the mouse suprachiasmatic nucleus.
    Sosniyenko S; Hut RA; Daan S; Sumová A
    Eur J Neurosci; 2009 Nov; 30(9):1802-14. PubMed ID: 19840112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterogeneity of rhythmic suprachiasmatic nucleus neurons: Implications for circadian waveform and photoperiodic encoding.
    Schaap J; Albus H; VanderLeest HT; Eilers PH; Détári L; Meijer JH
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15994-9. PubMed ID: 14671328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Food anticipatory circadian rhythms in mice entrained to long or short day photoperiods.
    Power SC; Mistlberger RE
    Physiol Behav; 2020 Aug; 222():112939. PubMed ID: 32407832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Basis of robustness and resilience in the suprachiasmatic nucleus: individual neurons form nodes in circuits that cycle daily.
    Butler MP; Silver R
    J Biol Rhythms; 2009 Oct; 24(5):340-52. PubMed ID: 19755580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The proportion of light-responsive neurons determines the limit cycle properties of the suprachiasmatic nucleus.
    Gu C; Ramkisoensing A; Liu Z; Meijer JH; Rohling JH
    J Biol Rhythms; 2014 Feb; 29(1):16-27. PubMed ID: 24492879
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators.
    Mohawk JA; Takahashi JS
    Trends Neurosci; 2011 Jul; 34(7):349-58. PubMed ID: 21665298
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Circadian entrainment aftereffects in suprachiasmatic nuclei and peripheral tissues in vitro.
    Molyneux PC; Dahlgren MK; Harrington ME
    Brain Res; 2008 Sep; 1228():127-34. PubMed ID: 18598681
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic neuronal network organization of the circadian clock and possible deterioration in disease.
    Meijer JH; Colwell CS; Rohling JHT; Houben T; Michel S
    Prog Brain Res; 2012; 199():143-162. PubMed ID: 22877664
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential effects of constant light on circadian clock resetting by photic and nonphotic stimuli in Syrian hamsters.
    Landry GJ; Mistlberger RE
    Brain Res; 2005 Oct; 1059(1):52-8. PubMed ID: 16169532
    [TBL] [Abstract][Full Text] [Related]  

  • 39. IA Channels Encoded by Kv1.4 and Kv4.2 Regulate Circadian Period of PER2 Expression in the Suprachiasmatic Nucleus.
    Granados-Fuentes D; Hermanstyne TO; Carrasquillo Y; Nerbonne JM; Herzog ED
    J Biol Rhythms; 2015 Oct; 30(5):396-407. PubMed ID: 26152125
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatiotemporal heterogeneity in the electrical activity of suprachiasmatic nuclei neurons and their response to photoperiod.
    Brown TM; Piggins HD
    J Biol Rhythms; 2009 Feb; 24(1):44-54. PubMed ID: 19227579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.