These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19305893)

  • 1. Redox switching and oxygen evolution electrocatalysis in polymeric iron oxyhydroxide films.
    Lyons ME; Brandon MP
    Phys Chem Chem Phys; 2009 Apr; 11(13):2203-17. PubMed ID: 19305893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox switching and oxygen evolution at oxidized metal and metal oxide electrodes: iron in base.
    Lyons ME; Doyle RL; Brandon MP
    Phys Chem Chem Phys; 2011 Dec; 13(48):21530-51. PubMed ID: 22068318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base.
    Doyle RL; Lyons ME
    Phys Chem Chem Phys; 2013 Apr; 15(14):5224-37. PubMed ID: 23348122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.
    Trotochaud L; Ranney JK; Williams KN; Boettcher SW
    J Am Chem Soc; 2012 Oct; 134(41):17253-61. PubMed ID: 22991896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of electrocatalytic reduction of nitric oxide on Pt(100).
    Rosca V; Koper MT
    J Phys Chem B; 2005 Sep; 109(35):16750-9. PubMed ID: 16853133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH.
    Surendranath Y; Kanan MW; Nocera DG
    J Am Chem Soc; 2010 Nov; 132(46):16501-9. PubMed ID: 20977209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen.
    Louie MW; Bell AT
    J Am Chem Soc; 2013 Aug; 135(33):12329-37. PubMed ID: 23859025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleation, growth, and repair of a cobalt-based oxygen evolving catalyst.
    Surendranath Y; Lutterman DA; Liu Y; Nocera DG
    J Am Chem Soc; 2012 Apr; 134(14):6326-36. PubMed ID: 22394103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of porous electrode properties on the electrochemical transfer coefficient.
    Soderberg JN; Co AC; Sirk AH; Birss VI
    J Phys Chem B; 2006 Jun; 110(21):10401-10. PubMed ID: 16722746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tafel Slope Plot as a Tool to Analyze Electrocatalytic Reactions.
    van der Heijden O; Park S; Vos RE; Eggebeen JJJ; Koper MTM
    ACS Energy Lett; 2024 Apr; 9(4):1871-1879. PubMed ID: 38633990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-trap kinetic equation for the oxygen reduction reaction on Pt(111) in acidic media.
    Wang JX; Zhang J; Adzic RR
    J Phys Chem A; 2007 Dec; 111(49):12702-10. PubMed ID: 18052309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism and Tafel lines of electro-oxidation of water to oxygen on RuO2(110).
    Fang YH; Liu ZP
    J Am Chem Soc; 2010 Dec; 132(51):18214-22. PubMed ID: 21133410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge transport in redox polyelectrolyte multilayer films: the dramatic effects of outmost layer and solution ionic strength.
    Tagliazucchi M; Calvo EJ
    Chemphyschem; 2010 Sep; 11(13):2957-68. PubMed ID: 20629006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated Durability Test for High-Surface-Area Oxyhydroxide Nickel Supported on Raney Nickel as Catalyst for the Alkaline Oxygen Evolution Reaction.
    Delgado D; Bizzotto F; Zana A; Arenz M
    Chemphyschem; 2019 Nov; 20(22):3147-3153. PubMed ID: 31173447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrocatalytic oxidation of ammonia on Pt(111) and Pt(100) surfaces.
    Rosca V; Koper MT
    Phys Chem Chem Phys; 2006 Jun; 8(21):2513-24. PubMed ID: 16721436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of electro-oxidation of carbon monoxide on stepped platinum electrodes in alkaline media: a chronoamperometric and kinetic modeling study.
    García G; Koper MT
    Phys Chem Chem Phys; 2009 Dec; 11(48):11437-46. PubMed ID: 20024414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting.
    Fominykh K; Chernev P; Zaharieva I; Sicklinger J; Stefanic G; Döblinger M; Müller A; Pokharel A; Böcklein S; Scheu C; Bein T; Fattakhova-Rohlfing D
    ACS Nano; 2015 May; 9(5):5180-8. PubMed ID: 25831435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen Evolution Catalyzed by Nickel-Iron Oxide Nanocrystals with a Nonequilibrium Phase.
    Bau JA; Luber EJ; Buriak JM
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19755-63. PubMed ID: 26293239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of poly(styrene-sulfonate)/poly(L-lysine) and fibronectin as biofouling-preventing layers in dissolved oxygen electrochemical measurements.
    Trouillon R; Cheung C; Patel BA; O'Hare D
    Analyst; 2009 Apr; 134(4):784-93. PubMed ID: 19305931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights into water splitting at mesoporous α-Fe2O3 films: a study by modulated transmittance and impedance spectroscopies.
    Cummings CY; Marken F; Peter LM; Wijayantha KG; Tahir AA
    J Am Chem Soc; 2012 Jan; 134(2):1228-34. PubMed ID: 22191733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.