These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 19306069)
1. Automation of cell line development. Lindgren K; Salmén A; Lundgren M; Bylund L; Ebler A; Fäldt E; Sörvik L; Fenge C; Skoging-Nyberg U Cytotechnology; 2009 Jan; 59(1):1-10. PubMed ID: 19306069 [TBL] [Abstract][Full Text] [Related]
2. Methionine sulfoximine supplementation enhances productivity in GS-CHOK1SV cell lines through glutathione biosynthesis. Feary M; Racher AJ; Young RJ; Smales CM Biotechnol Prog; 2017 Jan; 33(1):17-25. PubMed ID: 27689785 [TBL] [Abstract][Full Text] [Related]
3. Development of transfection and high-producer screening protocols for the CHOK1SV cell system. de la Cruz Edmonds MC; Tellers M; Chan C; Salmon P; Robinson DK; Markusen J Mol Biotechnol; 2006 Oct; 34(2):179-90. PubMed ID: 17172663 [TBL] [Abstract][Full Text] [Related]
4. Attenuated glutamine synthetase as a selection marker in CHO cells to efficiently isolate highly productive stable cells for the production of antibodies and other biologics. Lin PC; Chan KF; Kiess IA; Tan J; Shahreel W; Wong SY; Song Z MAbs; 2019 Jul; 11(5):965-976. PubMed ID: 31043114 [TBL] [Abstract][Full Text] [Related]
5. High-throughput screening of antibody-expressing CHO clones using an automated shaken deep-well system. Wang B; Albanetti T; Miro-Quesada G; Flack L; Li L; Klover J; Burson K; Evans K; Ivory W; Bowen M; Schoner R; Hawley-Nelson P Biotechnol Prog; 2018 Nov; 34(6):1460-1471. PubMed ID: 30298994 [TBL] [Abstract][Full Text] [Related]
6. Automated multi-scale cascade of parallel stirred-tank bioreactors for fast protein expression studies. Von den Eichen N; Bromig L; Sidarava V; Marienberg H; Weuster-Botz D J Biotechnol; 2021 May; 332():103-113. PubMed ID: 33845064 [TBL] [Abstract][Full Text] [Related]
7. Increased MSX level improves biological productivity and production stability in multiple recombinant GS CHO cell lines. Tian J; He Q; Oliveira C; Qian Y; Egan S; Xu J; Qian NX; Langsdorf E; Warrack B; Aranibar N; Reily M; Borys M; Li ZJ Eng Life Sci; 2020 Mar; 20(3-4):112-125. PubMed ID: 32874175 [TBL] [Abstract][Full Text] [Related]
8. Fed-batch bioreactor performance and cell line stability evaluation of the artificial chromosome expression technology expressing an IgG1 in Chinese hamster ovary cells. Combs RG; Yu E; Roe S; Piatchek MB; Jones HL; Mott J; Kennard ML; Goosney DL; Monteith D Biotechnol Prog; 2011; 27(1):201-8. PubMed ID: 21312367 [TBL] [Abstract][Full Text] [Related]
9. Integration of cell line and process development to overcome the challenge of a difficult to express protein. Alves CS; Gilbert A; Dalvi S; St Germain B; Xie W; Estes S; Kshirsagar R; Ryll T Biotechnol Prog; 2015; 31(5):1201-11. PubMed ID: 25919541 [TBL] [Abstract][Full Text] [Related]
10. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells. Fan L; Kadura I; Krebs LE; Hatfield CC; Shaw MM; Frye CC Biotechnol Bioeng; 2012 Apr; 109(4):1007-15. PubMed ID: 22068567 [TBL] [Abstract][Full Text] [Related]
11. A deep-well plate enabled automated high-throughput cell line development platform. Tang X; Quiroz J; Zhang Y; Pan J; Lai Z; Du Z; Liu R Biotechnol Prog; 2024; 40(3):e3442. PubMed ID: 38377061 [TBL] [Abstract][Full Text] [Related]
12. Establishment of a fully automated microtiter plate-based system for suspension cell culture and its application for enhanced process optimization. Markert S; Joeris K Biotechnol Bioeng; 2017 Jan; 114(1):113-121. PubMed ID: 27399304 [TBL] [Abstract][Full Text] [Related]
13. Reducing recombinant protein expression during CHO pool selection enhances frequency of high-producing cells. Poulain A; Mullick A; Massie B; Durocher Y J Biotechnol; 2019 Apr; 296():32-41. PubMed ID: 30885656 [TBL] [Abstract][Full Text] [Related]
14. Validation of the transferability of membrane-based fed-batch shake flask cultivations to stirred-tank reactor using three different protease producing Bacillus strains. Müller J; Hütterott A; Habicher T; Mußmann N; Büchs J J Biosci Bioeng; 2019 Nov; 128(5):599-605. PubMed ID: 31151898 [TBL] [Abstract][Full Text] [Related]
15. Development of a highly-efficient CHO cell line generation system with engineered SV40E promoter. Fan L; Kadura I; Krebs LE; Larson JL; Bowden DM; Frye CC J Biotechnol; 2013 Dec; 168(4):652-8. PubMed ID: 23994266 [TBL] [Abstract][Full Text] [Related]
16. Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system. Nakamura T; Omasa T J Biosci Bioeng; 2015 Sep; 120(3):323-9. PubMed ID: 25792187 [TBL] [Abstract][Full Text] [Related]
17. Towards automation in biologics production via Raman micro-spectroscopy, laser-induced forward cell transfer and surface-enhanced Raman spectroscopy. Jaeckle E; Brauchle E; Nottrodt N; Wehner M; Lensing R; Gillner A; Schenke-Layland K; Bach M; Burger-Kentischer A J Biotechnol; 2020 Nov; 323():313-321. PubMed ID: 32898625 [TBL] [Abstract][Full Text] [Related]
18. Development of a chemically defined platform fed-batch culture media for monoclonal antibody-producing CHO cell lines with optimized choline content. Kuwae S; Miyakawa I; Doi T Cytotechnology; 2018 Jun; 70(3):939-948. PubMed ID: 29322349 [TBL] [Abstract][Full Text] [Related]
19. Automated dynamic fed-batch process and media optimization for high productivity cell culture process development. Lu F; Toh PC; Burnett I; Li F; Hudson T; Amanullah A; Li J Biotechnol Bioeng; 2013 Jan; 110(1):191-205. PubMed ID: 22767053 [TBL] [Abstract][Full Text] [Related]
20. Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells. Figueroa B; Ailor E; Osborne D; Hardwick JM; Reff M; Betenbaugh MJ Biotechnol Bioeng; 2007 Jul; 97(4):877-92. PubMed ID: 17099908 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]