These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 1930623)

  • 21. Evaluation of Ceolus™ microcrystalline cellulose grades for the direct compression of enteric-coated pellets.
    Kucera SU; DiNunzio JC; Kaneko N; McGinity JW
    Drug Dev Ind Pharm; 2012 Mar; 38(3):341-50. PubMed ID: 21870908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of novel diclofenac potassium controlled release tablets by wet granulation technique and the effect of co-excipients on in vitro drug release rates.
    Shah S; Khan GM; Jan SU; Shah K; Hussain A; Khan H; Khan H; Khan H; Khan KA
    Pak J Pharm Sci; 2012 Jan; 25(1):161-8. PubMed ID: 22186325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Study on formulation of naoxuekang dispersible tablets].
    Fu MY; Lv ZF; Chen YZ; Xie QC; Shen L
    Zhong Yao Cai; 2010 Nov; 33(11):1800-3. PubMed ID: 21434447
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A flexible technology for modified-release drugs: multiple-unit pellet system (MUPS).
    Abdul S; Chandewar AV; Jaiswal SB
    J Control Release; 2010 Oct; 147(1):2-16. PubMed ID: 20493217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acid-treated yeast cell wall as a binder displaying function of disintegrant.
    Ozeki T; Katsuyama H; Yasuzawa Y; Takashima Y; Kasai T; Eguchi T; Kakiuchi H; Yuasa H; Okada H
    AAPS PharmSciTech; 2003; 4(3):E41. PubMed ID: 14621973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nifedipine di-matrix depot tablets prepared by compression coating for obtaining zero-order release.
    Liu T; Shi Y; Li J; Jiang W; Yin T; Zhang Y; He H; Wang Y; Tang X
    Drug Dev Ind Pharm; 2018 Sep; 44(9):1426-1433. PubMed ID: 29871528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formulation and evaluation of nanocrystalline cellulose as a potential disintegrant.
    Wang C; Huang H; Jia M; Jin S; Zhao W; Cha R
    Carbohydr Polym; 2015 Oct; 130():275-9. PubMed ID: 26076627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring the potential of a highly compressible microcrystalline cellulose as novel tabletting excipient in the compaction of extended-release coated pellets containing an extremely water-soluble model drug.
    Zeeshan F; Peh KK; Tan YT
    AAPS PharmSciTech; 2009; 10(3):850-7. PubMed ID: 19554454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The use of the SeDeM Diagram expert system to determine the suitability of diluents-disintegrants for direct compression and their use in formulation of ODT.
    Aguilar-Díaz JE; García-Montoya E; Pérez-Lozano P; Suñe-Negre JM; Miñarro M; Ticó JR
    Eur J Pharm Biopharm; 2009 Nov; 73(3):414-23. PubMed ID: 19602435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pectin/anhydrous dibasic calcium phosphate matrix tablets for in vitro controlled release of water-soluble drug.
    Mamani PL; Ruiz-Caro R; Veiga MD
    Int J Pharm; 2015 Oct; 494(1):235-43. PubMed ID: 26276258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of cellulose derivatives and additives in the spray-drying preparation of acetaminophen delivery systems.
    Billon A; Petit M; Doko MB; Bataille B; Jacob M
    Drug Dev Ind Pharm; 1999 Nov; 25(11):1149-56. PubMed ID: 10596352
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sustained-release dosage form of phenylpropanolamine hydrochloride (3). Application of factorial design.
    Sevgi F; Ozyazici M; Güneri T
    J Microencapsul; 1994; 11(4):439-44. PubMed ID: 7931943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An easy-to-use approach for determining the disintegration ability of disintegrants by analysis of available surface area.
    Iwao Y; Tanaka S; Uchimoto T; Noguchi S; Itai S
    Int J Pharm; 2013 May; 448(1):1-8. PubMed ID: 23518366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interpolymer complexation between copovidone and carbopol and its effect on drug release from matrix tablets.
    Zhang F; Meng F; Wang ZY; Na W
    Drug Dev Ind Pharm; 2017 Feb; 43(2):190-203. PubMed ID: 27599027
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Silicone adhesive matrix of verapamil hydrochloride to provide pH-independent sustained release.
    Tolia G; Li SK
    AAPS PharmSciTech; 2014 Feb; 15(1):1-10. PubMed ID: 24022347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Felodipine β-cyclodextrin complex as an active core for time delayed chronotherapeutic treatment of hypertension.
    Pagar KP; Vavia PR
    Acta Pharm; 2012 Nov; 62(3):395-410. PubMed ID: 23470351
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of superdisintegrants on efavirenz release from tablet formulations.
    Rajesh YV; Balasubramaniam J; Bindu K; Sridevi R; Swetha M; Rao VU
    Acta Pharm; 2010 Jun; 60(2):185-95. PubMed ID: 21134855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pulse release of doxazosin from hydroxyethylcellulose compression coated tablet: mechanistic and in vivo study.
    Biswas N; Guha A; Sahoo RK; Kuotsu K
    Int J Biol Macromol; 2015 Jan; 72():537-43. PubMed ID: 25179280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Piperine fast disintegrating tablets comprising sustained-release matrix pellets with enhanced bioavailability: formulation,
    Zhu Y; Yu J; Zhou G; Gu Z; Adu-Frimpong M; Deng W; Yu J; Xu X
    Pharm Dev Technol; 2020 Jun; 25(5):617-624. PubMed ID: 32009511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of novel bilayer gastroretentive tablets based on hydrophobic polymers.
    Nguyen TT; Hwang KM; Kim SH; Park ES
    Int J Pharm; 2020 Jan; 574():118865. PubMed ID: 31765783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.