These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 19306266)
1. Isolation of rare cells from cell mixtures by dielectrophoresis. Gascoyne PR; Noshari J; Anderson TJ; Becker FF Electrophoresis; 2009 Apr; 30(8):1388-98. PubMed ID: 19306266 [TBL] [Abstract][Full Text] [Related]
2. On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells. Aghaamoo M; Aghilinejad A; Chen X; Xu J Electrophoresis; 2019 May; 40(10):1486-1493. PubMed ID: 30740752 [TBL] [Abstract][Full Text] [Related]
3. Correlations between the dielectric properties and exterior morphology of cells revealed by dielectrophoretic field-flow fractionation. Gascoyne PR; Shim S; Noshari J; Becker FF; Stemke-Hale K Electrophoresis; 2013 Apr; 34(7):1042-50. PubMed ID: 23172680 [TBL] [Abstract][Full Text] [Related]
4. Highlighting the uniqueness in dielectrophoretic enrichment of circulating tumor cells. S Iliescu F; Sim WJ; Heidari H; P Poenar D; Miao J; Taylor HK; Iliescu C Electrophoresis; 2019 May; 40(10):1457-1477. PubMed ID: 30676660 [TBL] [Abstract][Full Text] [Related]
5. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Moon HS; Kwon K; Kim SI; Han H; Sohn J; Lee S; Jung HI Lab Chip; 2011 Mar; 11(6):1118-25. PubMed ID: 21298159 [TBL] [Abstract][Full Text] [Related]
6. High‑throughput and continuous flow isolation of rare circulating tumor cells and clusters in gastric cancer from human whole blood samples using electromagnetic vibration‑based filtration. Xiang A; Xue M; Ren F; Wang L; Ye Z; Li D; Ji Q; Ji G; Lu Z Oncol Rep; 2020 Jun; 43(6):1975-1985. PubMed ID: 32236590 [TBL] [Abstract][Full Text] [Related]
7. Quantification of capture efficiency, purity, and single-cell isolation in the recovery of circulating melanoma cells from peripheral blood by dielectrophoresis. Chen H; Osman SY; Moose DL; Vanneste M; Anderson JL; Henry MD; Anand RK Lab Chip; 2023 May; 23(11):2586-2600. PubMed ID: 37185977 [TBL] [Abstract][Full Text] [Related]
8. Lateral fluid flow fractionation using dielectrophoresis (LFFF-DEP) for size-independent, label-free isolation of circulating tumor cells. Waheed W; Alazzam A; Mathew B; Christoforou N; Abu-Nada E J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jun; 1087-1088():133-137. PubMed ID: 29734073 [TBL] [Abstract][Full Text] [Related]
9. Label-free enrichment of MCF7 breast cancer cells from leukocytes using continuous flow dielectrophoresis. Çağlayan Arslan Z; Demircan Yalçın Y; Külah H Electrophoresis; 2022 Jul; 43(13-14):1531-1544. PubMed ID: 35318696 [TBL] [Abstract][Full Text] [Related]
10. Design of a novel integrated microfluidic chip for continuous separation of circulating tumor cells from peripheral blood cells. Bakhshi MS; Rizwan M; Khan GJ; Duan H; Zhai K Sci Rep; 2022 Oct; 12(1):17016. PubMed ID: 36220844 [TBL] [Abstract][Full Text] [Related]
11. Localized Electroporation With Dielectrophoretic Field Flow Fractionation: Toward Removal of Circulating Tumour Cells From Human Blood. Kinio S; Mills JK IEEE Trans Nanobioscience; 2017 Dec; 16(8):802-809. PubMed ID: 29053456 [TBL] [Abstract][Full Text] [Related]
12. Acoustic impedance-based size-independent isolation of circulating tumour cells from blood using acoustophoresis. Karthick S; Pradeep PN; Kanchana P; Sen AK Lab Chip; 2018 Dec; 18(24):3802-3813. PubMed ID: 30402651 [TBL] [Abstract][Full Text] [Related]
13. Contactless dielectrophoretic spectroscopy: examination of the dielectric properties of cells found in blood. Sano MB; Henslee EA; Schmelz E; Davalos RV Electrophoresis; 2011 Nov; 32(22):3164-71. PubMed ID: 22102497 [TBL] [Abstract][Full Text] [Related]
14. High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force. Huang SB; Wu MH; Lin YH; Hsieh CH; Yang CL; Lin HC; Tseng CP; Lee GB Lab Chip; 2013 Apr; 13(7):1371-83. PubMed ID: 23389102 [TBL] [Abstract][Full Text] [Related]
15. Label-free ferrohydrodynamic cell separation of circulating tumor cells. Zhao W; Cheng R; Jenkins BD; Zhu T; Okonkwo NE; Jones CE; Davis MB; Kavuri SK; Hao Z; Schroeder C; Mao L Lab Chip; 2017 Sep; 17(18):3097-3111. PubMed ID: 28809987 [TBL] [Abstract][Full Text] [Related]
16. Application of optically-induced-dielectrophoresis in microfluidic system for purification of circulating tumour cells for gene expression analysis- Cancer cell line model. Chiu TK; Chou WP; Huang SB; Wang HM; Lin YC; Hsieh CH; Wu MH Sci Rep; 2016 Sep; 6():32851. PubMed ID: 27609546 [TBL] [Abstract][Full Text] [Related]
17. Isolation of rare cancer cells from blood cells using dielectrophoresis. Salmanzadeh A; Sano MB; Shafiee H; Stremler MA; Davalos RV Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():590-3. PubMed ID: 23365961 [TBL] [Abstract][Full Text] [Related]
18. Wedge-shaped microfluidic chip for circulating tumor cells isolation and its clinical significance in gastric cancer. Yang C; Zhang N; Wang S; Shi D; Zhang C; Liu K; Xiong B J Transl Med; 2018 May; 16(1):139. PubMed ID: 29792200 [TBL] [Abstract][Full Text] [Related]
19. Ultrahigh-throughput magnetic sorting of large blood volumes for epitope-agnostic isolation of circulating tumor cells. Mishra A; Dubash TD; Edd JF; Jewett MK; Garre SG; Karabacak NM; Rabe DC; Mutlu BR; Walsh JR; Kapur R; Stott SL; Maheswaran S; Haber DA; Toner M Proc Natl Acad Sci U S A; 2020 Jul; 117(29):16839-16847. PubMed ID: 32641515 [TBL] [Abstract][Full Text] [Related]
20. Isolation of circulating tumor cells by dielectrophoresis. Gascoyne PR; Shim S Cancers (Basel); 2014 Mar; 6(1):545-79. PubMed ID: 24662940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]