BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 193065)

  • 1. Rat hypothalamic corticotropin-releasing factor (CRF) content remains constant despite marked acute or chronic changes in ACTH secretion.
    Yasuda N; Greer MA
    Neuroendocrinology; 1976; 22(1):48-56. PubMed ID: 193065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corticosterone-induced changes in hypothalamic corticotropin-releasing factor (CRF) content after stress.
    Sato T; Sato M; Shinsako J; Dallman MF
    Endocrinology; 1975 Aug; 97(2):265-74. PubMed ID: 169120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological changes in rat hypothalamic CRF: circadian, stress and steroid suppression.
    Moldow RL; Fischman AJ
    Peptides; 1982; 3(5):837-40. PubMed ID: 6983684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of hypothalamic-pituitary-adrenal axis responsiveness to stress in a rat model of acute cholestasis.
    Swain MG; Patchev V; Vergalla J; Chrousos G; Jones EA
    J Clin Invest; 1993 May; 91(5):1903-8. PubMed ID: 8387536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Desensitization of the hypothalamic-pituitary-adrenal axis following prolonged administration of corticotropin-releasing hormone or vasopressin.
    Tizabi Y; Aguilera G
    Neuroendocrinology; 1992 Nov; 56(5):611-8. PubMed ID: 1336816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of paraventricular lesions on corticotropin-releasing factor (CRF)-like immunoreactivity in the stalk-median eminence: studies on the adrenocorticotropin response to ether stress and exogenous CRF.
    Bruhn TO; Plotsky PM; Vale WW
    Endocrinology; 1984 Jan; 114(1):57-62. PubMed ID: 6317350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the hypothalamic-pituitary-adrenal axis during water deprivation.
    Aguilera G; Lightman SL; Kiss A
    Endocrinology; 1993 Jan; 132(1):241-8. PubMed ID: 8380375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corticotropin releasing factor distribution in normal and Brattleboro rat brain, and effect of deafferentation, hypophysectomy and steroid treatment in normal animals.
    Krieger DT; Liotta A; Brownstein MJ
    Endocrinology; 1977 Jan; 100(1):227-37. PubMed ID: 11988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of the rat hypothalamic-pituitary-adrenal axis after discontinuation of prolonged treatment with the synthetic glucocorticoid agonist dexamethasone.
    Calogero AE; Kamilaris TC; Johnson EO; Tartaglia ME; Chrousos G
    Endocrinology; 1990 Oct; 127(4):1574-9. PubMed ID: 2169393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogeny of the stress response in the rat: role of the pituitary and the hypothalamus.
    Walker CD; Perrin M; Vale W; Rivier C
    Endocrinology; 1986 Apr; 118(4):1445-51. PubMed ID: 3004915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corticotrope response to removal of releasing factors and corticosteroids in vivo.
    Dallman MF; Makara GB; Roberts JL; Levin N; Blum M
    Endocrinology; 1985 Nov; 117(5):2190-7. PubMed ID: 2995008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Diurnal fluctuations of CRF (corticotropin releasing factor) activities in bilaterally adrenalectomized and hypophysectomized rats].
    Sakakura M
    Horumon To Rinsho; 1972 Apr; 20(4):297-302. PubMed ID: 4340594
    [No Abstract]   [Full Text] [Related]  

  • 13. Constant light and dark affect the circadian rhythm of the hypothalamic-pituitary-adrenal axis.
    Fischman AJ; Kastin AJ; Graf MV; Moldow RL
    Neuroendocrinology; 1988 Apr; 47(4):309-16. PubMed ID: 2836747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuance of diurnal rhythmicity of CRF activity in hypophysectomized rats.
    Takebe K; Sakakura M; Horiuchi Y; Mashimo K
    Endocrinology; 1972 Jun; 90(6):1515-20. PubMed ID: 4336438
    [No Abstract]   [Full Text] [Related]  

  • 15. The site of inhibitory action of a natural (corticosterone) and synthetic steroid (dexamethasone) in the hypothalamic-pituitary-adrenal axis.
    Sakakura M; Yoshioka M; Kobayashi M; Takebe K
    Neuroendocrinology; 1981 Mar; 32(3):174-8. PubMed ID: 6261179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic brain glucocorticoid receptor blockade enhances the rise in circadian and stress-induced pituitary-adrenal activity.
    van Haarst AD; Oitzl MS; Workel JO; de Kloet ER
    Endocrinology; 1996 Nov; 137(11):4935-43. PubMed ID: 8895366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neonatal facilitation of stress-induced adrenocorticotropin secretion by prior stress: evidence for increased central drive to the pituitary.
    Walker CD; Dallman MF
    Endocrinology; 1993 Mar; 132(3):1101-7. PubMed ID: 8382596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of paraventricular lesions on stimulated ACTH release and CRF in stalk-median eminence of the rat.
    Makara GB; Stark E; Kárteszi M; Palkovits M; Rappay G
    Am J Physiol; 1981 Apr; 240(4):E441-6. PubMed ID: 6261587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic cold in adrenalectomized, corticosterone (B)-treated rats: facilitated corticotropin responses to acute restraint emerge as B increases.
    Akana SF; Dallman MF
    Endocrinology; 1997 Aug; 138(8):3249-58. PubMed ID: 9231775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A superfusion system technique for the study of the sites of action of glucocorticoids in the rat hypothalamus-pituitary-adrenal system in vitro. II. Hypothalamus-pituitary cell-adrenal cell superfusion.
    Vermes I; Mulder GH; Smelik PG
    Endocrinology; 1977 Apr; 100(4):1153-9. PubMed ID: 300056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.