BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19306579)

  • 1. [Construction of engineered Escherichia coli for aerobic succinate production].
    Kang Z; Geng Y; Zhang Y; Qi Q
    Sheng Wu Gong Cheng Xue Bao; 2008 Dec; 24(12):2081-5. PubMed ID: 19306579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate.
    Lin H; Bennett GN; San KY
    Biotechnol Bioeng; 2005 Jan; 89(2):148-56. PubMed ID: 15543598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions.
    Lin H; Bennett GN; San KY
    Biotechnol Bioeng; 2005 Jun; 90(6):775-9. PubMed ID: 15803467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemostat culture characterization of Escherichia coli mutant strains metabolically engineered for aerobic succinate production: a study of the modified metabolic network based on metabolite profile, enzyme activity, and gene expression profile.
    Lin H; Bennett GN; San KY
    Metab Eng; 2005; 7(5-6):337-52. PubMed ID: 16099188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Escherichia coli for an efficient aerobic fermentation platform.
    Kang Z; Geng Y; Xia Yz; Kang J; Qi Q
    J Biotechnol; 2009 Oct; 144(1):58-63. PubMed ID: 19563847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation.
    Lee SJ; Lee DY; Kim TY; Kim BH; Lee J; Lee SY
    Appl Environ Microbiol; 2005 Dec; 71(12):7880-7. PubMed ID: 16332763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli.
    Andersson C; Hodge D; Berglund KA; Rova U
    Biotechnol Prog; 2007; 23(2):381-8. PubMed ID: 17253726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions.
    Vemuri GN; Eiteman MA; Altman E
    J Ind Microbiol Biotechnol; 2002 Jun; 28(6):325-32. PubMed ID: 12032805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of recombinant aminolevulinate synthase production in Escherichia coli using factorial design.
    Xie L; Hall D; Eiteman MA; Altman E
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):267-73. PubMed ID: 14661117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of succinate by a pflB ldhA double mutant of Escherichia coli overexpressing malate dehydrogenase.
    Wang W; Li Z; Xie J; Ye Q
    Bioprocess Biosyst Eng; 2009 Oct; 32(6):737-45. PubMed ID: 19156443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a stress-induced system in Escherichia coli for efficient polyhydroxyalkanoates production.
    Kang Z; Wang Q; Zhang H; Qi Q
    Appl Microbiol Biotechnol; 2008 May; 79(2):203-8. PubMed ID: 18347791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of succinic acid production in metabolically engineered Escherichia coli by neutralizing agent, organic acids, and osmolarity.
    Andersson C; Helmerius J; Hodge D; Berglund KA; Rova U
    Biotechnol Prog; 2009; 25(1):116-23. PubMed ID: 19198001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Escherichia coli to enhance recombinant protein production through acetate reduction.
    Aristidou AA; San KY; Bennett GN
    Biotechnol Prog; 1995; 11(4):475-8. PubMed ID: 7654314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of galactose permease and pyruvate carboxylase in Escherichia coli ptsG mutant increases the growth rate and succinate yield under anaerobic conditions.
    Wang Q; Wu C; Chen T; Chen X; Zhao X
    Biotechnol Lett; 2006 Jan; 28(2):89-93. PubMed ID: 16369691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Escherichia coli to improve culture performance and reduce formation of by-products during recombinant protein production under transient intermittent anaerobic conditions.
    Lara AR; Vazquez-Limón C; Gosset G; Bolívar F; López-Munguía A; Ramírez OT
    Biotechnol Bioeng; 2006 Aug; 94(6):1164-75. PubMed ID: 16718678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of the anaerobic central metabolic pathway in Escherichia coli for the simultaneous anaerobic production of isoamyl acetate and succinic acid.
    Dittrich CR; Bennett GN; San KY
    Biotechnol Prog; 2009; 25(5):1304-9. PubMed ID: 19774663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Sorghum vulgare phosphoenolpyruvate carboxylase and Lactococcus lactis pyruvate carboxylase coexpression on succinate production in mutant strains of Escherichia coli.
    Lin H; San KY; Bennett GN
    Appl Microbiol Biotechnol; 2005 Jun; 67(4):515-23. PubMed ID: 15565333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerobic production of isoamyl acetate by overexpression of the yeast alcohol acetyl-transferases AFT1 and AFT2 in Escherichia coli and using low-cost fermentation ingredients.
    Singh R; Vadlani PV; Harrison ML; Bennett GN; San KY
    Bioprocess Biosyst Eng; 2008 Jun; 31(4):299-306. PubMed ID: 17891501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Optimization of fermentation of recombinant human Endostatin (rh-Endostatin) expression in Escherichia coli].
    Chang GD; Li ZL; Qin JY; Ma CQ; Luo YZ; Xu P
    Sheng Wu Gong Cheng Xue Bao; 2005 Jul; 21(4):662-6. PubMed ID: 16176112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of CO2 on succinate production in dual-phase Escherichia coli fermentations.
    Lu S; Eiteman MA; Altman E
    J Biotechnol; 2009 Sep; 143(3):213-23. PubMed ID: 19631242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.