These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 19306921)

  • 1. An objective method to measure electrode independence in cochlear implant patients with a dual-masker forward masking technique.
    Klop WM; Frijns JH; Soede W; Briaire JJ
    Hear Res; 2009 Jul; 253(1-2):3-14. PubMed ID: 19306921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Psychophysical assessment of spatial spread of excitation in electrical hearing with single and dual electrode contact maskers.
    Dingemanse JG; Frijns JH; Briaire JJ
    Ear Hear; 2006 Dec; 27(6):645-57. PubMed ID: 17086076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitation patterns of simultaneous and sequential dual-electrode stimulation in cochlear implant recipients.
    Saoji AA; Litvak LM; Hughes ML
    Ear Hear; 2009 Oct; 30(5):559-67. PubMed ID: 19617837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological spread of excitation and pitch perception for dual and single electrodes using the Nucleus Freedom cochlear implant.
    Busby PA; Battmer RD; Pesch J
    Ear Hear; 2008 Dec; 29(6):853-64. PubMed ID: 18633324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements of monopolar and bipolar current spreads using forward-masking with a fixed probe.
    Bingabr MG; Espinoza-Varas B; Sigdel S
    Cochlear Implants Int; 2014 May; 15(3):166-72. PubMed ID: 24606491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous and non-simultaneous dual electrode stimulation in cochlear implants: evidence for two neural response modalities.
    Frijns JH; Kalkman RK; Vanpoucke FJ; Bongers JS; Briaire JJ
    Acta Otolaryngol; 2009 Apr; 129(4):433-9. PubMed ID: 19117170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the relationship between psychophysical perception and electrically evoked compound action potential threshold in young cochlear implant recipients: clinical implications for implant fitting.
    Thai-Van H; Truy E; Charasse B; Boutitie F; Chanal JM; Cochard N; Piron JP; Ribas S; Deguine O; Fraysse B; Mondain M; Uziel A; Collet L
    Clin Neurophysiol; 2004 Dec; 115(12):2811-24. PubMed ID: 15546789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using current steering to increase spectral resolution in CII and HiRes 90K users.
    Koch DB; Downing M; Osberger MJ; Litvak L
    Ear Hear; 2007 Apr; 28(2 Suppl):38S-41S. PubMed ID: 17496643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrode interaction in cochlear implant recipients: comparison of straight and contour electrode arrays.
    Xi X; Ji F; Han D; Hong M; Chen A
    ORL J Otorhinolaryngol Relat Spec; 2009; 71(4):228-37. PubMed ID: 19707042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of stimulus and recording parameters on spatial spread of excitation and masking patterns obtained with the electrically evoked compound action potential in cochlear implants.
    Hughes ML; Stille LJ
    Ear Hear; 2010 Oct; 31(5):679-92. PubMed ID: 20505513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Practical model description of peripheral neural excitation in cochlear implant recipients: 5. refractory recovery and facilitation.
    Cohen LT
    Hear Res; 2009 Feb; 248(1-2):1-14. PubMed ID: 19110048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrode interaction in pediatric cochlear implant subjects.
    Eisen MD; Franck KH
    J Assoc Res Otolaryngol; 2005 Jun; 6(2):160-70. PubMed ID: 15952052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Practical model description of peripheral neural excitation in cochlear implant recipients: 1. Growth of loudness and ECAP amplitude with current.
    Cohen LT
    Hear Res; 2009 Jan; 247(2):87-99. PubMed ID: 19063956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial spread of neural excitation in cochlear implant recipients: comparison of improved ECAP method and psychophysical forward masking.
    Cohen LT; Richardson LM; Saunders E; Cowan RS
    Hear Res; 2003 May; 179(1-2):72-87. PubMed ID: 12742240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of stimulus level on excitation patterns of individual electrode contacts in cochlear implants.
    Biesheuvel JD; Briaire JJ; Kalkman RK; Frijns JHM
    Hear Res; 2022 Jul; 420():108490. PubMed ID: 35395510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency tuning curves derived from auditory steady state evoked potentials: a proof-of-concept study.
    Markessis E; Poncelet L; Colin C; Coppens A; Hoonhorst I; Kadhim H; Deltenre P
    Ear Hear; 2009 Feb; 30(1):43-53. PubMed ID: 19125026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of triphasic pulses with adjustable phase amplitude ratio (PAR) for cochlear ECAP recording: II. recovery functions.
    Bahmer A; Baumann U
    J Neurosci Methods; 2012 Mar; 205(1):212-20. PubMed ID: 22202890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrode independence in intraneural cochlear nerve stimulation.
    Badi AN; Owa AO; Shelton C; Normann RA
    Otol Neurotol; 2007 Jan; 28(1):16-24. PubMed ID: 17195741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Psychophysical recovery from single-pulse forward masking in electric hearing.
    Nelson DA; Donaldson GS
    J Acoust Soc Am; 2001 Jun; 109(6):2921-33. PubMed ID: 11425134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation detection interference in cochlear implant subjects.
    Richardson LM; Busby PA; Clark GM
    J Acoust Soc Am; 1998 Jul; 104(1):442-52. PubMed ID: 9670536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.