These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 19306952)

  • 1. Attenuation of ionic interactions profoundly lowers the kinetic thermal stability of Pyrococcus furiosus triosephosphate isomerase.
    Chandrayan SK; Guptasarma P
    Biochim Biophys Acta; 2009 Jun; 1794(6):905-12. PubMed ID: 19306952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introduction of a thermophile-sourced ion pair network in the fourth beta/alpha unit of a psychophile-derived triosephosphate isomerase from Methanococcoides burtonii significantly increases its kinetic thermal stability.
    Dhaunta N; Arora K; Chandrayan SK; Guptasarma P
    Biochim Biophys Acta; 2013 Jun; 1834(6):1023-33. PubMed ID: 23328412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct proteolysis-based purification of an overexpressed hyperthermophile protein from Escherichia coli lysate: a novel exploitation of the link between structural stability and proteolytic resistance.
    Mukherjee S; Guptasarma P
    Protein Expr Purif; 2005 Mar; 40(1):71-6. PubMed ID: 15721773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 'Super-perfect' enzymes: Structural stabilities and activities of recombinant triose phosphate isomerases from Pyrococcus furiosus and Thermococcus onnurineus produced in Escherichia coli.
    Sharma P; Guptasarma P
    Biochem Biophys Res Commun; 2015 May; 460(3):753-8. PubMed ID: 25824038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial destabilization of native structure by a combination of heat and denaturant facilitates cold denaturation in a hyperthermophile protein.
    Chandrayan SK; Guptasarma P
    Proteins; 2008 Aug; 72(2):539-46. PubMed ID: 18452212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow irreversible unfolding of Pyrococcus furiosus triosephosphate isomerase: separation and quantitation of conformers through a novel electrophoretic approach.
    Mukherjee S; Sharma S; Kumar S; Guptasarma P
    Anal Biochem; 2005 Dec; 347(1):49-59. PubMed ID: 16236239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperthermophile protein behavior: partially-structured conformations of Pyrococcus furiosus rubredoxin monomers generated through forced cold-denaturation and refolding.
    Chandrayan SK; Prakash S; Ahmed S; Guptasarma P
    PLoS One; 2014; 9(3):e80014. PubMed ID: 24603413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-induced denaturation and renaturation of triosephosphate isomerase from Saccharomyces cerevisiae: evidence of dimerization coupled to refolding of the thermally unfolded protein.
    Benítez-Cardoza CG; Rojo-Domínguez A; Hernández-Arana A
    Biochemistry; 2001 Jul; 40(30):9049-58. PubMed ID: 11467968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The unusually slow relaxation kinetics of the folding-unfolding of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus.
    Kaushik JK; Ogasahara K; Yutani K
    J Mol Biol; 2002 Mar; 316(4):991-1003. PubMed ID: 11884137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic study of the thermal denaturation of a hyperthermostable extracellular α-amylase from Pyrococcus furiosus.
    Brown I; Dafforn TR; Fryer PJ; Cox PW
    Biochim Biophys Acta; 2013 Dec; 1834(12):2600-5. PubMed ID: 24063888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the role of highly conserved residues in triosephosphate isomerase--analysis of site specific mutants at positions 64 and 75 in the Plasmodial enzyme.
    Bandyopadhyay D; Murthy MR; Balaram H; Balaram P
    FEBS J; 2015 Oct; 282(20):3863-82. PubMed ID: 26206206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endoglucanase activity at a second site in
    Sharma P; Guptasarma P
    FEBS Open Bio; 2017 Aug; 7(8):1126-1143. PubMed ID: 28781953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex kinetics and residual structure in the thermal unfolding of yeast triosephosphate isomerase.
    Labastida-Polito A; Garza-Ramos G; Camarillo-Cadena M; Zubillaga RA; Hernández-Arana A
    BMC Biochem; 2015 Sep; 16():20. PubMed ID: 26334568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the role of oligomerization in the high thermal stability of Pyrococcus furiosus ornithine carbamoyltransferase by site-specific mutants.
    Clantin B; Tricot C; Lonhienne T; Stalon V; Villeret V
    Eur J Biochem; 2001 Jul; 268(14):3937-42. PubMed ID: 11453986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A strategy based on thermal flexibility to design triosephosphate isomerase proteins with increased or decreased kinetic stability.
    Quezada AG; Cabrera N; Piñeiro Á; Díaz-Salazar AJ; Díaz-Mazariegos S; Romero-Romero S; Pérez-Montfort R; Costas M
    Biochem Biophys Res Commun; 2018 Sep; 503(4):3017-3022. PubMed ID: 30143261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased susceptibility of beta-glucosidase from the hyperthermophile Pyrococcus furiosus to thermal inactivation at higher pressures.
    Bruins ME; Meersman F; Janssen AE; Heremans K; Boom RM
    FEBS J; 2009 Jan; 276(1):109-17. PubMed ID: 19019084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression, purification, and characterization of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Pyrococcus furiosus.
    Schofield LR; Patchett ML; Parker EJ
    Protein Expr Purif; 2004 Mar; 34(1):17-27. PubMed ID: 14766297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function of a regulated archaeal triosephosphate isomerase adapted to high temperature.
    Walden H; Taylor GL; Lorentzen E; Pohl E; Lilie H; Schramm A; Knura T; Stubbe K; Tjaden B; Hensel R
    J Mol Biol; 2004 Sep; 342(3):861-75. PubMed ID: 15342242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermostability and thermoactivity of citrate synthases from the thermophilic and hyperthermophilic archaea, Thermoplasma acidophilum and Pyrococcus furiosus.
    Arnott MA; Michael RA; Thompson CR; Hough DW; Danson MJ
    J Mol Biol; 2000 Dec; 304(4):657-68. PubMed ID: 11099387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The unusually slow unfolding rate causes the high stability of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus: equilibrium and kinetic studies of guanidine hydrochloride-induced unfolding and refolding.
    Ogasahara K; Nakamura M; Nakura S; Tsunasawa S; Kato I; Yoshimoto T; Yutani K
    Biochemistry; 1998 Dec; 37(50):17537-44. PubMed ID: 9860869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.