BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 19307179)

  • 1. A promoter recognition mechanism common to yeast mitochondrial and phage t7 RNA polymerases.
    Nayak D; Guo Q; Sousa R
    J Biol Chem; 2009 May; 284(20):13641-13647. PubMed ID: 19307179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional fidelities of human mitochondrial POLRMT, yeast mitochondrial Rpo41, and phage T7 single-subunit RNA polymerases.
    Sultana S; Solotchi M; Ramachandran A; Patel SS
    J Biol Chem; 2017 Nov; 292(44):18145-18160. PubMed ID: 28882896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conservation of promoter melting mechanisms in divergent regions of the single-subunit RNA polymerases.
    Velazquez G; Guo Q; Wang L; Brieba LG; Sousa R
    Biochemistry; 2012 May; 51(18):3901-10. PubMed ID: 22524540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of human mitochondrial RNA polymerase.
    Ringel R; Sologub M; Morozov YI; Litonin D; Cramer P; Temiakov D
    Nature; 2011 Sep; 478(7368):269-73. PubMed ID: 21947009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promoter Length Affects the Initiation of T7 RNA Polymerase In Vitro: New Insights into Promoter/Polymerase Co-evolution.
    Padmanabhan R; Sarcar SN; Miller DL
    J Mol Evol; 2020 Mar; 88(2):179-193. PubMed ID: 31863129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast Mitochondrial Transcription Factor Mtf1 Determines the Precision of Promoter-Directed Initiation of RNA Polymerase Rpo41.
    Yang X; Chang HR; Yin YW
    PLoS One; 2015; 10(9):e0136879. PubMed ID: 26332125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of bacteriophage T7 RNA polymerase by linker insertion mutagenesis.
    Gross L; Chen WJ; McAllister WT
    J Mol Biol; 1992 Nov; 228(2):488-505. PubMed ID: 1453459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro promoter recognition by the catalytic subunit of plant phage-type RNA polymerases.
    Bohne AV; Teubner M; Liere K; Weihe A; Börner T
    Plant Mol Biol; 2016 Oct; 92(3):357-69. PubMed ID: 27497992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial transcription factor Mtf1 traps the unwound non-template strand to facilitate open complex formation.
    Paratkar S; Patel SS
    J Biol Chem; 2010 Feb; 285(6):3949-3956. PubMed ID: 20008320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compensatory evolution in response to a novel RNA polymerase: orthologous replacement of a central network gene.
    Bull JJ; Springman R; Molineux IJ
    Mol Biol Evol; 2007 Apr; 24(4):900-8. PubMed ID: 17220516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T7 RNA polymerase mutants with altered promoter specificities.
    Raskin CA; Diaz GA; McAllister WT
    Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3147-51. PubMed ID: 8475053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switching promotor recognition of phage RNA polymerase in silico along lab-directed evolution path.
    E C; Dai L; Yu J
    Biophys J; 2022 Feb; 121(4):582-595. PubMed ID: 35031277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The N-terminal domain of the yeast mitochondrial RNA polymerase regulates multiple steps of transcription.
    Paratkar S; Deshpande AP; Tang GQ; Patel SS
    J Biol Chem; 2011 May; 286(18):16109-20. PubMed ID: 21454631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substitution of a single bacteriophage T3 residue in bacteriophage T7 RNA polymerase at position 748 results in a switch in promoter specificity.
    Raskin CA; Diaz G; Joho K; McAllister WT
    J Mol Biol; 1992 Nov; 228(2):506-15. PubMed ID: 1453460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single mutation attenuates both the transcription termination and RNA-dependent RNA polymerase activity of T7 RNA polymerase.
    Wu H; Wei T; Yu B; Cheng R; Huang F; Lu X; Yan Y; Wang X; Liu C; Zhu B
    RNA Biol; 2021 Oct; 18(sup1):451-466. PubMed ID: 34314299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of transcription initiation by the yeast mitochondrial RNA polymerase.
    Deshpande AP; Patel SS
    Biochim Biophys Acta; 2012; 1819(9-10):930-8. PubMed ID: 22353467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential blocking effects of the acetaldehyde-derived DNA lesion N2-ethyl-2'-deoxyguanosine on transcription by multisubunit and single subunit RNA polymerases.
    Cheng TF; Hu X; Gnatt A; Brooks PJ
    J Biol Chem; 2008 Oct; 283(41):27820-27828. PubMed ID: 18669632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real time monitoring of the interaction of T7 RNA polymerase with azobenzene-tethered T7 promoter by biosensor.
    Liu M; Asanuma H; Komiyama M
    Nucleic Acids Symp Ser (Oxf); 2004; (48):221-2. PubMed ID: 17150558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. T7 RNA polymerases backed up by covalently trapped proteins catalyze highly error prone transcription.
    Nakano T; Ouchi R; Kawazoe J; Pack SP; Makino K; Ide H
    J Biol Chem; 2012 Feb; 287(9):6562-72. PubMed ID: 22235136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of substitutions in a conserved DX(2)GR sequence motif, found in many DNA-dependent nucleotide polymerases, on transcription by T7 RNA polymerase.
    Imburgio D; Anikin M; McAllister WT
    J Mol Biol; 2002 May; 319(1):37-51. PubMed ID: 12051935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.