BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 19307185)

  • 21. Oligomerization and hemolytic properties of the C-terminal domain of pyolysin, a cholesterol-dependent cytolysin.
    Pokrajac L; Harris JR; Sarraf N; Palmer M
    Biochem Cell Biol; 2013 Apr; 91(2):59-66. PubMed ID: 23527633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crucial role of perfringolysin O D1 domain in orchestrating structural transitions leading to membrane-perforating pores: a hydrogen-deuterium exchange study.
    Kacprzyk-Stokowiec A; Kulma M; Traczyk G; Kwiatkowska K; Sobota A; Dadlez M
    J Biol Chem; 2014 Oct; 289(41):28738-52. PubMed ID: 25164812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. R468A mutation in perfringolysin O destabilizes toxin structure and induces membrane fusion.
    Kulma M; Kacprzyk-Stokowiec A; Kwiatkowska K; Traczyk G; Sobota A; Dadlez M
    Biochim Biophys Acta Biomembr; 2017 Jun; 1859(6):1075-1088. PubMed ID: 28263714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights into the action of the superfamily of cholesterol-dependent cytolysins from studies of intermedilysin.
    Polekhina G; Giddings KS; Tweten RK; Parker MW
    Proc Natl Acad Sci U S A; 2005 Jan; 102(3):600-5. PubMed ID: 15637162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Intermolecular π-Stacking Interaction Drives Conformational Changes Necessary to β-Barrel Formation in a Pore-Forming Toxin.
    Burns JR; Morton CJ; Parker MW; Tweten RK
    mBio; 2019 Jul; 10(4):. PubMed ID: 31266869
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The cholesterol-dependent cytolysin family of gram-positive bacterial toxins.
    Heuck AP; Moe PC; Johnson BB
    Subcell Biochem; 2010; 51():551-77. PubMed ID: 20213558
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions.
    Soltani CE; Hotze EM; Johnson AE; Tweten RK
    Proc Natl Acad Sci U S A; 2007 Dec; 104(51):20226-31. PubMed ID: 18077338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of Cholesterol with Perfringolysin O: What Have We Learned from Functional Analysis?
    Savinov SN; Heuck AP
    Toxins (Basel); 2017 Nov; 9(12):. PubMed ID: 29168745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Perfringolysin O structure and mechanism of pore formation as a paradigm for cholesterol-dependent cytolysins.
    Johnson BB; Heuck AP
    Subcell Biochem; 2014; 80():63-81. PubMed ID: 24798008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Passive administration of monoclonal antibodies to anthrolysin O prolong survival in mice lethally infected with Bacillus anthracis.
    Nakouzi A; Rivera J; Rest RF; Casadevall A
    BMC Microbiol; 2008 Sep; 8():159. PubMed ID: 18811967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of Listeria monocytogenes expressing anthrolysin O and phosphatidylinositol-specific phospholipase C from Bacillus anthracis.
    Wei Z; Schnupf P; Poussin MA; Zenewicz LA; Shen H; Goldfine H
    Infect Immun; 2005 Oct; 73(10):6639-46. PubMed ID: 16177340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ostreolysin A and anthrolysin O use different mechanisms to control movement of cholesterol from the plasma membrane to the endoplasmic reticulum.
    Johnson KA; Endapally S; Vazquez DC; Infante RE; Radhakrishnan A
    J Biol Chem; 2019 Nov; 294(46):17289-17300. PubMed ID: 31597703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacillus anthracis anthrolysin O and three phospholipases C are functionally redundant in a murine model of inhalation anthrax.
    Heffernan BJ; Thomason B; Herring-Palmer A; Hanna P
    FEMS Microbiol Lett; 2007 Jun; 271(1):98-105. PubMed ID: 17419764
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin.
    Ramachandran R; Heuck AP; Tweten RK; Johnson AE
    Nat Struct Biol; 2002 Nov; 9(11):823-7. PubMed ID: 12368903
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O-lipid raft interaction.
    Nelson LD; Johnson AE; London E
    J Biol Chem; 2008 Feb; 283(8):4632-42. PubMed ID: 18089559
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antibody-mediated neutralization of perfringolysin o for intracellular protein delivery.
    Yang NJ; Liu DV; Sklaviadis D; Gui DY; Vander Heiden MG; Wittrup KD
    Mol Pharm; 2015 Jun; 12(6):1992-2000. PubMed ID: 25881713
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chimeric approach for narrowing a membrane-inserting region within human perforin.
    Neely AE; Mandigo KA; Robinson RL; Ness TL; Weiland MH
    Protein Eng Des Sel; 2017 Feb; 30(2):105-111. PubMed ID: 27980121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epithelial cells are sensitive detectors of bacterial pore-forming toxins.
    Ratner AJ; Hippe KR; Aguilar JL; Bender MH; Nelson AL; Weiser JN
    J Biol Chem; 2006 May; 281(18):12994-8. PubMed ID: 16520379
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Constitutive activation of Rho proteins by CNF-1 influences tight junction structure and epithelial barrier function.
    Hopkins AM; Walsh SV; Verkade P; Boquet P; Nusrat A
    J Cell Sci; 2003 Feb; 116(Pt 4):725-42. PubMed ID: 12538773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins.
    Shatursky O; Heuck AP; Shepard LA; Rossjohn J; Parker MW; Johnson AE; Tweten RK
    Cell; 1999 Oct; 99(3):293-9. PubMed ID: 10555145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.