BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 19307630)

  • 1. Use of neural networks to detect minor and major pathogens that cause bovine mastitis.
    Hassan KJ; Samarasinghe S; Lopez-Benavides MG
    J Dairy Sci; 2009 Apr; 92(4):1493-9. PubMed ID: 19307630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of somatic cell count thresholds to detect subclinical mastitis in Gyr cows.
    dos Reis CB; Barreiro JR; Moreno JF; Porcionato MA; Santos MV
    J Dairy Sci; 2011 Sep; 94(9):4406-12. PubMed ID: 21854914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association of milk yield and infection status at dry-off with intramammary infections at subsequent calving.
    Newman KA; Rajala-Schultz PJ; Degraves FJ; Lakritz J
    J Dairy Res; 2010 Feb; 77(1):99-106. PubMed ID: 19906321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity and specificity of somatic cell count and California Mastitis Test for identifying intramammary infection in early lactation.
    Sargeant JM; Leslie KE; Shirley JE; Pulkrabek BJ; Lim GH
    J Dairy Sci; 2001 Sep; 84(9):2018-24. PubMed ID: 11573781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of somatic cell counts and intramammary infections across the dry period.
    Pantoja JC; Hulland C; Ruegg PL
    Prev Vet Med; 2009 Jul; 90(1-2):43-54. PubMed ID: 19409630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diagnosing intramammary infections: evaluation of definitions based on a single milk sample.
    Dohoo IR; Smith J; Andersen S; Kelton DF; Godden S;
    J Dairy Sci; 2011 Jan; 94(1):250-61. PubMed ID: 21183035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of mastitis pathogens by analysis of volatile bacterial metabolites.
    Hettinga KA; van Valenberg HJ; Lam TJ; van Hooijdonk AC
    J Dairy Sci; 2008 Oct; 91(10):3834-9. PubMed ID: 18832205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency of isolation of environmental mastitis-causing pathogens and incidence of new intramammary infection during the nonlactating period.
    Oliver SP
    Am J Vet Res; 1988 Nov; 49(11):1789-93. PubMed ID: 3073674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnosis of intramammary infection in samples yielding negative results or minor pathogens in conventional bacterial culturing.
    Bexiga R; Koskinen MT; Holopainen J; Carneiro C; Pereira H; Ellis KA; Vilela CL
    J Dairy Res; 2011 Feb; 78(1):49-55. PubMed ID: 21134309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computerized mastitis decision aid using farm-based records: an artificial neural network approach.
    Heald CW; Kim T; Sischo WM; Cooper JB; Wolfgang DR
    J Dairy Sci; 2000 Apr; 83(4):711-20. PubMed ID: 10791787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the California Mastitis Test as a precalving treatment selection tool for Holstein heifers.
    Roy JP; Du Tremblay D; Descôteaux L; Messier S; Scholl D; Bouchard E
    Vet Microbiol; 2009 Feb; 134(1-2):136-42. PubMed ID: 18930609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of clinical mastitis with sensor data from automatic milking systems is improved by using decision-tree induction.
    Kamphuis C; Mollenhorst H; Heesterbeek JA; Hogeveen H
    J Dairy Sci; 2010 Aug; 93(8):3616-27. PubMed ID: 20655431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Somatic cell count during and between milkings.
    Olde Riekerink RG; Barkema HW; Veenstra W; Berg FE; Stryhn H; Zadoks RN
    J Dairy Sci; 2007 Aug; 90(8):3733-41. PubMed ID: 17638984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Somatic cell count status across the dry period as a risk factor for the development of clinical mastitis in the subsequent lactation.
    Pantoja JC; Hulland C; Ruegg PL
    J Dairy Sci; 2009 Jan; 92(1):139-48. PubMed ID: 19109272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mastitis of periparturient Holstein cattle: a phenotypic and genetic study.
    Detilleux JC; Kehrli ME; Freeman AE; Fox LK; Kelley DH
    J Dairy Sci; 1995 Oct; 78(10):2285-93. PubMed ID: 8598411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Bacteriological diagnosis with Petrifilm of mastitis pathogens in milk samples from each quarter and bulk milk samples].
    Krömker V; Hauptmann T; Bormann A
    Dtsch Tierarztl Wochenschr; 2007 Oct; 114(10):378-80, 382-3. PubMed ID: 17970336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of analysis techniques for on-line detection of clinical mastitis.
    Nielen M; Schukken YH; Brand A; Haring S; Ferwerda-van Zonneveld RT
    J Dairy Sci; 1995 May; 78(5):1050-61. PubMed ID: 7622716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring major mastitis pathogens at the population level based on examination of bulk tank milk samples.
    Rysanek D; Zouharova M; Babak V
    J Dairy Res; 2009 Feb; 76(1):117-23. PubMed ID: 19121238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical specificity and sensitivity of a real-time polymerase chain reaction assay for identification of bovine mastitis pathogens.
    Koskinen MT; Holopainen J; Pyörälä S; Bredbacka P; Pitkälä A; Barkema HW; Bexiga R; Roberson J; Sølverød L; Piccinini R; Kelton D; Lehmusto H; Niskala S; Salmikivi L
    J Dairy Sci; 2009 Mar; 92(3):952-9. PubMed ID: 19233788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of mastitis and its stage of progression by automatic milking systems using artificial neural networks.
    Sun Z; Samarasinghe S; Jago J
    J Dairy Res; 2010 May; 77(2):168-75. PubMed ID: 20030900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.