These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 19308238)

  • 1. Influence of some environmental factors on populations of Pratylenchus minyus in wheat.
    Kimpinski J; Wallace HR; Cunningham RB
    J Nematol; 1976 Oct; 8(4):310-4. PubMed ID: 19308238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal Dynamics and Yield Relationships of Pratylenchus spp. in Corn Roots.
    Todd TC; Oakley TR
    J Nematol; 1996 Dec; 28(4S):676-81. PubMed ID: 19277194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of Wheat Growth and Yield by Pratylenchus neglectus in the Pacific Northwest.
    Smiley RW; Whittaker RG; Gourlie JA; Easley SA
    Plant Dis; 2005 Sep; 89(9):958-968. PubMed ID: 30786629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of wheat roots infected with the pathogenic fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp.
    Barret M; Frey-Klett P; Guillerm-Erckelboudt AY; Boutin M; Guernec G; Sarniguet A
    Mol Plant Microbe Interact; 2009 Dec; 22(12):1611-23. PubMed ID: 19888826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of bacterial polysaccharides on the growth of Gaeumannomyces graminis var. tritici and wheat roots.
    Lasík J; Stanĕk M; Vancura V; Wurst M
    Folia Microbiol (Praha); 1979; 24(3):262-8. PubMed ID: 468081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Cereal Root Disease in Western Australia Using Soil DNA and Environmental Parameters.
    Poole GJ; Harries M; Hüberli D; Miyan S; MacLeod WJ; Lawes R; McKay A
    Phytopathology; 2015 Aug; 105(8):1069-79. PubMed ID: 25822184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microorganisms in the rhizosphere of wheat colonized by the fungus Gaeumannomyces graminis var. tritici.
    Bednárová M; Stanĕk M; Vancura V; Veselý D
    Folia Microbiol (Praha); 1979; 24(3):253-61. PubMed ID: 112016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling of early infection of cereal roots by the take-all fungus: a detailed mechanistic simulator.
    Gilligan CA; Brassett PR; Campbell A
    New Phytol; 1994 Nov; 128(3):515-537. PubMed ID: 33874569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymyxa graminis Isolates from Australia: Identification in Wheat Roots and Soil, Molecular Characterization, and Wide Genetic Diversity.
    Cox BA; Luo H; Jones RAC
    Plant Dis; 2014 Nov; 98(11):1567-1575. PubMed ID: 30699794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in population structure of the soilborne fungus Gaeumannomyces graminis var. tritici during continuous wheat cropping.
    Lebreton L; Lucas P; Dugas F; Guillerm AY; Schoeny A; Sarniguet A
    Environ Microbiol; 2004 Nov; 6(11):1174-85. PubMed ID: 15479250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparative Transcriptomic and Proteomic Analysis of Hexaploid Wheat's Responses to Colonization by
    Kang X; Wang L; Guo Y; Ul Arifeen MZ; Cai X; Xue Y; Bu Y; Wang G; Liu C
    Mol Plant Microbe Interact; 2019 Oct; 32(10):1336-1347. PubMed ID: 31125282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of crop management on take-all development and disease cycles on winter wheat.
    Colbach N; Lucas P; Meynard JM
    Phytopathology; 1997 Jan; 87(1):26-32. PubMed ID: 18945150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detoxification of Benzoxazolinone Allelochemicals from Wheat by Gaeumannomyces graminis var. tritici, G. graminis var. graminis, G. graminis var. avenae, and Fusarium culmorum.
    Friebe A; Vilich V; Hennig L; Kluge M; Sicker D
    Appl Environ Microbiol; 1998 Jul; 64(7):2386-91. PubMed ID: 9647804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees.
    Gessler A; Schneider S; VON Sengbusch D; Weber P; Hanemann U; Huber C; Rothe A; Kreutzer K; Rennenberg H
    New Phytol; 1998 Feb; 138(2):275-285. PubMed ID: 33863096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EARLY SENESCENCE OF THE ROOT CORTEX OF AGRICULTURAL GRASSES, AND OF WHEAT FOLLOWING ROOT AMPUTATION OR INFECTION BY THE TAKE-ALL FUNGUS.
    Kirk JJ; Deacon JW
    New Phytol; 1986 Sep; 104(1):63-75. PubMed ID: 33873808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pratylenchus thornei Associated with Reduced Wheat Yield in Oregon.
    Smiley RW; Whittaker RG; Gourlie JA; Easley SA
    J Nematol; 2005 Mar; 37(1):45-54. PubMed ID: 19262842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Population Dynamics of Pratylenchus penetrans, Paratylenchus sp., and Criconemella xenoplax on Western Oregon Peppermint.
    Merrifield KJ; Ingham RE
    J Nematol; 1996 Dec; 28(4):557-64. PubMed ID: 19277174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of primary and secondary infection in take-all epidemics.
    Bailey DJ; Gilligan CA
    Phytopathology; 1999 Jan; 89(1):84-91. PubMed ID: 18944808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear relationship between Gaeumannomyces graminis var. tritici (Ggt) genotypic frequencies and disease severity on wheat roots in the field.
    Lebreton L; Gosme M; Lucas P; Guillerm-Erckelboudt AY; Sarniguet A
    Environ Microbiol; 2007 Feb; 9(2):492-9. PubMed ID: 17222147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First Report of Gaeumannomyces graminis var. graminis on Seashore Paspalum in the United States.
    Elmore WC; Gooch MD; Stiles CM
    Plant Dis; 2002 Dec; 86(12):1405. PubMed ID: 30818459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.