These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 19308635)

  • 1. Phylogenetic inference with weighted codon evolutionary distances.
    Criscuolo A; Michel CJ
    J Mol Evol; 2009 Apr; 68(4):377-92. PubMed ID: 19308635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary distances between nucleotide sequences based on the distribution of substitution rates among sites as estimated by parsimony.
    Tourasse NJ; Gouy M
    Mol Biol Evol; 1997 Mar; 14(3):287-98. PubMed ID: 9066796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward extracting all phylogenetic information from matrices of evolutionary distances.
    Roch S
    Science; 2010 Mar; 327(5971):1376-9. PubMed ID: 20223986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic Tree Estimation With and Without Alignment: New Distance Methods and Benchmarking.
    Bogusz M; Whelan S
    Syst Biol; 2017 Mar; 66(2):218-231. PubMed ID: 27633353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scoredist: a simple and robust protein sequence distance estimator.
    Sonnhammer EL; Hollich V
    BMC Bioinformatics; 2005 Apr; 6():108. PubMed ID: 15857510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian coestimation of phylogeny and sequence alignment.
    Lunter G; Miklós I; Drummond A; Jensen JL; Hein J
    BMC Bioinformatics; 2005 Apr; 6():83. PubMed ID: 15804354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast NJ-like algorithms to deal with incomplete distance matrices.
    Criscuolo A; Gascuel O
    BMC Bioinformatics; 2008 Mar; 9():166. PubMed ID: 18366787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing evolutionary distances via adaptive distance functions.
    Damti Y; Gronau I; Moran S; Yavneh I
    J Theor Biol; 2018 Mar; 440():88-99. PubMed ID: 29277603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the robustness of phylogenetic methods to among-site variability in substitution processes.
    Holder MT; Zwickl DJ; Dessimoz C
    Philos Trans R Soc Lond B Biol Sci; 2008 Dec; 363(1512):4013-21. PubMed ID: 18852108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the quality of tree-based protein classification.
    Lazareva-Ulitsky B; Diemer K; Thomas PD
    Bioinformatics; 2005 May; 21(9):1876-90. PubMed ID: 15647305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Empirical codon substitution matrix.
    Schneider A; Cannarozzi GM; Gonnet GH
    BMC Bioinformatics; 2005 Jun; 6():134. PubMed ID: 15927081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixture models of nucleotide sequence evolution that account for heterogeneity in the substitution process across sites and across lineages.
    Jayaswal V; Wong TK; Robinson J; Poladian L; Jermiin LS
    Syst Biol; 2014 Sep; 63(5):726-42. PubMed ID: 24927722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.
    Tamura K; Peterson D; Peterson N; Stecher G; Nei M; Kumar S
    Mol Biol Evol; 2011 Oct; 28(10):2731-9. PubMed ID: 21546353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early evolutionary relationships among known life forms inferred from elongation factor EF-2/EF-G sequences: phylogenetic coherence and structure of the archaeal domain.
    Cammarano P; Palm P; Creti R; Ceccarelli E; Sanangelantoni AM; Tiboni O
    J Mol Evol; 1992 May; 34(5):396-405. PubMed ID: 1602493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data.
    Nei M; Tajima F; Tateno Y
    J Mol Evol; 1983; 19(2):153-70. PubMed ID: 6571220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic trees based on gene content.
    Huson DH; Steel M
    Bioinformatics; 2004 Sep; 20(13):2044-9. PubMed ID: 15044248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used.
    Takahashi K; Nei M
    Mol Biol Evol; 2000 Aug; 17(8):1251-8. PubMed ID: 10908645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pandit: a database of protein and associated nucleotide domains with inferred trees.
    Whelan S; de Bakker PI; Goldman N
    Bioinformatics; 2003 Aug; 19(12):1556-63. PubMed ID: 12912837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The genetic code can cause systematic bias in simple phylogenetic models.
    Whelan S
    Philos Trans R Soc Lond B Biol Sci; 2008 Dec; 363(1512):4003-11. PubMed ID: 18852102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covariance of maximum likelihood evolutionary distances between sequences aligned pairwise.
    Dessimoz C; Gil M
    BMC Evol Biol; 2008 Jun; 8():179. PubMed ID: 18573206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.