These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 19308871)

  • 1. The use of artificial neural networks to reduce data collection demands in determining spine loading: a laboratory based analysis.
    Parkinson RJ; Callaghan JP
    Comput Methods Biomech Biomed Engin; 2009 Oct; 12(5):511-22. PubMed ID: 19308871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of low back kinetic estimates obtained through posture matching, rigid link modeling and an EMG-assisted model.
    Parkinson RJ; Bezaire M; Callaghan JP
    Appl Ergon; 2011 Jul; 42(5):644-51. PubMed ID: 21055725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An evaluation of predictive methods for estimating cumulative spinal loading.
    Callaghan JP; Salewytsch AJ; Andrews DM
    Ergonomics; 2001 Jul; 44(9):825-37. PubMed ID: 11560364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Cervical Spine Compression and Shear in Helicopter Helmeted Conditions Using Artificial Neural Networks.
    Moore CAB; Barrett JM; Healey L; Callaghan JP; Fischer SL
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):154-166. PubMed ID: 34092207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the minimum sampling rate needed to accurately quantify cumulative spine loading from digitized video.
    Andrews DM; Callaghan JP
    Appl Ergon; 2003 Nov; 34(6):589-95. PubMed ID: 14559419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of lifting speed on the peak external forward bending, lateral bending, and twisting spine moments.
    Lavender SA; Li YC; Andersson GB; Natarajan RN
    Ergonomics; 1999 Jan; 42(1):111-25. PubMed ID: 9973875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating reduced bag weight as an effective risk mediator for mason tenders.
    Davis KG; Kotowski SE; Albers J; Marras WS
    Appl Ergon; 2010 Oct; 41(6):822-31. PubMed ID: 20206915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of an EMG-based method for continuous estimates of low back compression during asymmetrical occupational tasks.
    Mientjes MI; Norman RW; Wells RP; McGill SM
    Ergonomics; 1999 Jun; 42(6):868-79. PubMed ID: 10340027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of spinal loading through the use of handles.
    Davis KG; Marras WS; Waters TR
    Ergonomics; 1998 Aug; 41(8):1155-68. PubMed ID: 9715674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spine loading as a function of lift frequency, exposure duration, and work experience.
    Marras WS; Parakkat J; Chany AM; Yang G; Burr D; Lavender SA
    Clin Biomech (Bristol, Avon); 2006 May; 21(4):345-52. PubMed ID: 16310299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foot positioning instruction, initial vertical load position and lifting technique: effects on low back loading.
    Kingma I; Bosch T; Bruins L; van Dieën JH
    Ergonomics; 2004 Oct; 47(13):1365-85. PubMed ID: 15513714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical analysis of materials handling manipulators in short distance transfers of moderate mass objects: joint strength, spine forces and muscular antagonism.
    Nussbaum MA; Chaffin DB; Baker G
    Ergonomics; 1999 Dec; 42(12):1597-618. PubMed ID: 10643403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methodological considerations for the calculation of cumulative compression exposure of the lumbar spine: a sensitivity analysis on joint model and time standardization approaches.
    Fischer SL; Albert WJ; McClellan AJ; Callaghan JP
    Ergonomics; 2007 Sep; 50(9):1365-76. PubMed ID: 17654030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in spine loading patterns throughout the workday as a function of experience, lift frequency, and personality.
    Chany AM; Parakkat J; Yang G; Burr DL; Marras WS
    Spine J; 2006; 6(3):296-305. PubMed ID: 16651224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ship motion on spinal loading during manual lifting.
    Faber GS; Kingma I; Delleman NJ; van Dieën JH
    Ergonomics; 2008 Sep; 51(9):1426-40. PubMed ID: 18802823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of posture on dynamic back loading during a cable lifting task.
    Gallagher S; Marras WS; Davis KG; Kovacs K
    Ergonomics; 2002 Apr; 45(5):380-98. PubMed ID: 12028722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spine loading during asymmetric lifting using one versus two hands.
    Marras WS; Davis KG
    Ergonomics; 1998 Jun; 41(6):817-34. PubMed ID: 9629066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of joint moments using a neural network model of muscle activations from EMG signals.
    Wang L; Buchanan TS
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):30-7. PubMed ID: 12173737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of foot movement and an elastic lumbar back support on spinal loading during free-dynamic symmetric and asymmetric lifting exertions.
    Marras WS; Jorgensen MJ; Davis KG
    Ergonomics; 2000 May; 43(5):653-68. PubMed ID: 10877482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.