BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 19309292)

  • 21. Contingent capture of visual-spatial attention depends on capacity-limited central mechanisms: evidence from human electrophysiology and the psychological refractory period.
    Brisson B; Leblanc E; Jolicoeur P
    Biol Psychol; 2009 Feb; 80(2):218-25. PubMed ID: 19000734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Top-down feature-based selection of matching features for audio-visual synchrony discrimination.
    Fujisaki W; Nishida S
    Neurosci Lett; 2008 Mar; 433(3):225-30. PubMed ID: 18281153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Saccadic selectivity in complex visual search displays.
    Pomplun M
    Vision Res; 2006 Jun; 46(12):1886-900. PubMed ID: 16445960
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Directed and motivated attention during processing of natural scenes.
    Ferrari V; Codispoti M; Cardinale R; Bradley MM
    J Cogn Neurosci; 2008 Oct; 20(10):1753-61. PubMed ID: 18370595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural correlates of the stare-in-the-crowd effect.
    Doi H; Ueda K; Shinohara K
    Neuropsychologia; 2009 Mar; 47(4):1053-60. PubMed ID: 19046979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling eye movements in visual agnosia with a saliency map approach: bottom-up guidance or top-down strategy?
    Foulsham T; Barton JJ; Kingstone A; Dewhurst R; Underwood G
    Neural Netw; 2011 Aug; 24(6):665-77. PubMed ID: 21316191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The course of visual searching to a target in a fixed location: electrophysiological evidence from an emotional flanker task.
    Dong G; Yang L; Shen Y
    Neurosci Lett; 2009 Aug; 460(1):1-5. PubMed ID: 19446605
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Age differences in target detection and interference resolution in working memory: an event-related potential study.
    Tays WJ; Dywan J; Mathewson KJ; Segalowitz SJ
    J Cogn Neurosci; 2008 Dec; 20(12):2250-62. PubMed ID: 18457511
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Remembered but unused: the accessory items in working memory that do not guide attention.
    Peters JC; Goebel R; Roelfsema PR
    J Cogn Neurosci; 2009 Jun; 21(6):1081-91. PubMed ID: 18702589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bottom-up guidance in visual search for conjunctions.
    Proulx MJ
    J Exp Psychol Hum Percept Perform; 2007 Feb; 33(1):48-56. PubMed ID: 17311478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Top-down directed attention to stimulus features and attentional allocation to bottom-up deviations.
    Sawaki R; Katayama J
    J Vis; 2008 Nov; 8(15):4.1-8. PubMed ID: 19146288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Are objects the same as groups? ERP correlates of spatial attentional guidance by irrelevant feature similarity.
    Kasai T; Moriya H; Hirano S
    Brain Res; 2011 Jul; 1399():49-58. PubMed ID: 21652032
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activity in the visual cortex is modulated by top-down attention locked to reaction time.
    Moradi F; Hipp C; Koch C
    J Cogn Neurosci; 2007 Feb; 19(2):331-40. PubMed ID: 17280520
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tracking the location of visuospatial attention in a contingent capture paradigm.
    Leblanc E; Prime DJ; Jolicoeur P
    J Cogn Neurosci; 2008 Apr; 20(4):657-71. PubMed ID: 18052780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The remains of the trial: goal-determined inter-trial suppression of selective attention.
    Lleras A; Levinthal BR; Kawahara J
    Prog Brain Res; 2009; 176():195-213. PubMed ID: 19733758
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Searching for a salient target involves frontal regions.
    Wardak C; Vanduffel W; Orban GA
    Cereb Cortex; 2010 Oct; 20(10):2464-77. PubMed ID: 20100901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The attentional white bear phenomenon: the mandatory allocation of attention to expected distractor locations.
    Tsal Y; Makovski T
    J Exp Psychol Hum Percept Perform; 2006 Apr; 32(2):351-63. PubMed ID: 16634675
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visuospatial attention shifts by gaze and arrow cues: an ERP study.
    Hietanen JK; Leppänen JM; Nummenmaa L; Astikainen P
    Brain Res; 2008 Jun; 1215():123-36. PubMed ID: 18485332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unvoluntary attentional capture in change blindness.
    Schankin A; Wascher E
    Psychophysiology; 2008 Sep; 45(5):742-50. PubMed ID: 18665863
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Early and late modulation of saccade deviations by target distractor similarity.
    Mulckhuyse M; Van der Stigchel S; Theeuwes J
    J Neurophysiol; 2009 Sep; 102(3):1451-8. PubMed ID: 19553494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.