BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 19309317)

  • 1. Dynamics of free intracellular Ca2+ during synaptic and spike activity of cricket tibial motoneurons.
    Baden T; Hedwig B
    Eur J Neurosci; 2009 Apr; 29(7):1357-68. PubMed ID: 19309317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direction of action potential propagation influences calcium increases in distal dendrites of the cricket giant interneurons.
    Ogawa H; Baba Y; Oka K
    J Neurobiol; 2002 Oct; 53(1):44-56. PubMed ID: 12360582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Front leg movements and tibial motoneurons underlying auditory steering in the cricket (Gryllus bimaculatus deGeer).
    Baden T; Hedwig B
    J Exp Biol; 2008 Jul; 211(Pt 13):2123-33. PubMed ID: 18552302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial dynamics of action potentials estimated by dendritic Ca(2+) signals in insect projection neurons.
    Ogawa H; Mitani R
    Biochem Biophys Res Commun; 2015 Nov; 467(2):185-90. PubMed ID: 26456645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GABAB receptor activation causes a depression of low- and high-voltage-activated Ca2+ currents, postinhibitory rebound, and postspike afterhyperpolarization in lamprey neurons.
    Matsushima T; Tegnér J; Hill RH; Grillner S
    J Neurophysiol; 1993 Dec; 70(6):2606-19. PubMed ID: 8120601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic Excitation in Spinal Motoneurons Alternates with Synaptic Inhibition and Is Balanced by Outward Rectification during Rhythmic Motor Network Activity.
    Guzulaitis R; Hounsgaard J
    J Neurosci; 2017 Sep; 37(38):9239-9248. PubMed ID: 28842417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of apamin-sensitive k(ca) channels for reticulospinal synaptic transmission to motoneuron and for the afterhyperpolarization.
    Cangiano L; Wallén P; Grillner S
    J Neurophysiol; 2002 Jul; 88(1):289-99. PubMed ID: 12091554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of membrane potential in mesothoracic moto- and interneurons during stick insect front-leg walking.
    Ludwar BCh; Westmark S; Büschges A; Schmidt J
    J Neurophysiol; 2005 Oct; 94(4):2772-84. PubMed ID: 16000520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system.
    Büschges A; Ludwar BCh; Bucher D; Schmidt J; DiCaprio RA
    Eur J Neurosci; 2004 Apr; 19(7):1856-62. PubMed ID: 15078559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical properties of interneurons found within the trigeminal motor nucleus.
    McDavid S; Verdier D; Lund JP; Kolta A
    Eur J Neurosci; 2008 Sep; 28(6):1136-45. PubMed ID: 18783374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonspiking interneurons in walking system of the cockroach.
    Pearson KG; Fourtner CR
    J Neurophysiol; 1975 Jan; 38(1):33-52. PubMed ID: 162945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Medullary reticulospinal tract mediating the generalized motor inhibition in cats: parallel inhibitory mechanisms acting on motoneurons and on interneuronal transmission in reflex pathways.
    Takakusaki K; Kohyama J; Matsuyama K; Mori S
    Neuroscience; 2001; 103(2):511-27. PubMed ID: 11246165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presynaptic control of transmission along the pathway mediating disynaptic reciprocal inhibition in the cat.
    Enríquez-Denton M; Nielsen J; Perreault MC; Morita H; Petersen N; Hultborn H
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):623-37. PubMed ID: 10922013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spike-triggered dendritic calcium transients depend on synaptic activity in the cricket giant interneurons.
    Ogawa H; Baba Y; Oka K
    J Neurobiol; 2002 Feb; 50(3):234-44. PubMed ID: 11810638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational estimation of the distribution of L-type Ca(2+) channels in motoneurons based on variable threshold of activation of persistent inward currents.
    Bui TV; Ter-Mikaelian M; Bedrossian D; Rose PK
    J Neurophysiol; 2006 Jan; 95(1):225-41. PubMed ID: 16267115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of localized innervation of the dendritic trees of feline motoneurons on the amplification of synaptic input: a computational study.
    Grande G; Bui TV; Rose PK
    J Physiol; 2007 Sep; 583(Pt 2):611-30. PubMed ID: 17615105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic activation of plateaus in hindlimb motoneurons of decerebrate cats.
    Bennett DJ; Hultborn H; Fedirchuk B; Gorassini M
    J Neurophysiol; 1998 Oct; 80(4):2023-37. PubMed ID: 9772258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulus time-locked responses of motoneurons during forelimb fictive locomotion evoked by repetitive stimulation of the lateral funiculus.
    Kinoshita M; Yamaguchi T
    Brain Res; 2001 Jun; 904(1):31-42. PubMed ID: 11516409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular Ca2+ dynamics during spontaneous and evoked activity of leech heart interneurons: low-threshold Ca currents and graded synaptic transmission.
    Ivanov AI; Calabrese RL
    J Neurosci; 2000 Jul; 20(13):4930-43. PubMed ID: 10864951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern generation for walking and searching movements of a stick insect leg. II. Control of motoneuronal activity.
    Schmidt J; Fischer H; Büschges A
    J Neurophysiol; 2001 Jan; 85(1):354-61. PubMed ID: 11152735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.