These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 19309487)
1. Recognition between tRNASer and archaeal seryl-tRNA synthetases monitored by suppression of bacterial amber mutations. Lesjak S; Weygand-Durasevic I FEMS Microbiol Lett; 2009 May; 294(1):111-8. PubMed ID: 19309487 [TBL] [Abstract][Full Text] [Related]
2. Structural flexibility of the methanogenic-type seryl-tRNA synthetase active site and its implication for specific substrate recognition. Bilokapic S; Rokov Plavec J; Ban N; Weygand-Durasevic I FEBS J; 2008 Jun; 275(11):2831-44. PubMed ID: 18422966 [TBL] [Abstract][Full Text] [Related]
3. Shuffling of discrete tRNASer regions reveals differently utilized identity elements in yeast and methanogenic archaea. Gruic-Sovulj I; Jaric J; Dulic M; Cindric M; Weygand-Durasevic I J Mol Biol; 2006 Aug; 361(1):128-39. PubMed ID: 16822522 [TBL] [Abstract][Full Text] [Related]
4. Differential modes of transfer RNASer recognition in Methanosarcina barkeri. Korencic D; Polycarpo C; Weygand-Durasevic I; Söll D J Biol Chem; 2004 Nov; 279(47):48780-6. PubMed ID: 15364939 [TBL] [Abstract][Full Text] [Related]
5. Identification of amino acids in the N-terminal domain of atypical methanogenic-type Seryl-tRNA synthetase critical for tRNA recognition. Jaric J; Bilokapic S; Lesjak S; Crnkovic A; Ban N; Weygand-Durasevic I J Biol Chem; 2009 Oct; 284(44):30643-51. PubMed ID: 19734148 [TBL] [Abstract][Full Text] [Related]
6. An idiosyncratic serine ordering loop in methanogen seryl-tRNA synthetases guides substrates through seryl-tRNASer formation. Dulic M; Pozar J; Bilokapic S; Weygand-Durasevic I; Gruic-Sovulj I Biochimie; 2011 Oct; 93(10):1761-9. PubMed ID: 21704670 [TBL] [Abstract][Full Text] [Related]
7. Selective inhibition of divergent seryl-tRNA synthetases by serine analogues. Ahel D; Slade D; Mocibob M; Söll D; Weygand-Durasevic I FEBS Lett; 2005 Aug; 579(20):4344-8. PubMed ID: 16054140 [TBL] [Abstract][Full Text] [Related]
8. Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition. Bilokapic S; Maier T; Ahel D; Gruic-Sovulj I; Söll D; Weygand-Durasevic I; Ban N EMBO J; 2006 Jun; 25(11):2498-509. PubMed ID: 16675947 [TBL] [Abstract][Full Text] [Related]
9. Idiosyncratic helix-turn-helix motif in Methanosarcina barkeri seryl-tRNA synthetase has a critical architectural role. Bilokapic S; Ivic N; Godinic-Mikulcic V; Piantanida I; Ban N; Weygand-Durasevic I J Biol Chem; 2009 Apr; 284(16):10706-13. PubMed ID: 19228694 [TBL] [Abstract][Full Text] [Related]
10. Crystallographic and mutational studies of seryl-tRNA synthetase from the archaeon Pyrococcus horikoshii. Itoh Y; Sekine S; Kuroishi C; Terada T; Shirouzu M; Kuramitsu S; Yokoyama S RNA Biol; 2008; 5(3):169-77. PubMed ID: 18818520 [TBL] [Abstract][Full Text] [Related]
11. The unusual methanogenic seryl-tRNA synthetase recognizes tRNASer species from all three kingdoms of life. Bilokapic S; Korencic D; Söll D; Weygand-Durasevic I Eur J Biochem; 2004 Feb; 271(4):694-702. PubMed ID: 14764085 [TBL] [Abstract][Full Text] [Related]
12. Insights into substrate promiscuity of human seryl-tRNA synthetase. Holman KM; Puppala AK; Lee JW; Lee H; Simonović M RNA; 2017 Nov; 23(11):1685-1699. PubMed ID: 28808125 [TBL] [Abstract][Full Text] [Related]
13. Seryl-tRNA synthetase is not responsible for the evolution of CUG codon reassignment in Candida albicans. O'Sullivan JM; Mihr MJ; Santos MA; Tuite MF Yeast; 2001 Mar; 18(4):313-22. PubMed ID: 11223940 [TBL] [Abstract][Full Text] [Related]
14. Superposition of a tRNASer acceptor stem microhelix into the seryl-tRNA synthetase complex. Förster C; Brauer AB; Fürste JP; Betzel Ch; Weber M; Cordes F; Erdmann VA Biochem Biophys Res Commun; 2007 Oct; 362(2):415-8. PubMed ID: 17719008 [TBL] [Abstract][Full Text] [Related]
15. Coexpression of eukaryotic tRNASer and yeast seryl-tRNA synthetase leads to functional amber suppression in Escherichia coli. Weygand-Durasević I; Nalaskowska M; Söll D J Bacteriol; 1994 Jan; 176(1):232-9. PubMed ID: 8282701 [TBL] [Abstract][Full Text] [Related]
16. Yeast seryl-tRNA synthetase expressed in Escherichia coli recognizes bacterial serine-specific tRNAs in vivo. Weygand-Durasević I; Ban N; Jahn D; Söll D Eur J Biochem; 1993 Jun; 214(3):869-77. PubMed ID: 7686490 [TBL] [Abstract][Full Text] [Related]
17. Designing seryl-tRNA synthetase for improved serylation of selenocysteine tRNAs. Fu X; Crnković A; Sevostyanova A; Söll D FEBS Lett; 2018 Nov; 592(22):3759-3768. PubMed ID: 30317559 [TBL] [Abstract][Full Text] [Related]
18. Misacylation of pyrrolysine tRNA in vitro and in vivo. Gundllapalli S; Ambrogelly A; Umehara T; Li D; Polycarpo C; Söll D FEBS Lett; 2008 Oct; 582(23-24):3353-8. PubMed ID: 18775710 [TBL] [Abstract][Full Text] [Related]
19. Peroxin Pex21p interacts with the C-terminal noncatalytic domain of yeast seryl-tRNA synthetase and forms a specific ternary complex with tRNA(Ser). Godinic V; Mocibob M; Rocak S; Ibba M; Weygand-Durasevic I FEBS J; 2007 Jun; 274(11):2788-99. PubMed ID: 17451428 [TBL] [Abstract][Full Text] [Related]
20. Maize mitochondrial seryl-tRNA synthetase recognizes Escherichia coli tRNA(Ser) in vivo and in vitro. Rokov J; Söll D; Weygand-Durasević I Plant Mol Biol; 1998 Oct; 38(3):497-502. PubMed ID: 9747857 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]