BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 19309753)

  • 21. Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth.
    Kreft JU; Wimpenny JW
    Water Sci Technol; 2001; 43(6):135-41. PubMed ID: 11381959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A computational model for biofilm-based microbial fuel cells.
    Picioreanu C; Head IM; Katuri KP; van Loosdrecht MC; Scott K
    Water Res; 2007 Jul; 41(13):2921-40. PubMed ID: 17537478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flowing biofilms as a transport mechanism for biomass through porous media under laminar and turbulent conditions in a laboratory reactor system.
    Stoodley P; Dodds I; De Beer D; Scott HL; Boyle JD
    Biofouling; 2005; 21(3-4):161-8. PubMed ID: 16371336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads.
    Picioreanu C; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1998 Mar; 57(6):718-31. PubMed ID: 10099251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of wall shear rate on biofilm deposition and grazing in drinking water flow chambers.
    Paris T; Skali-Lami S; Block JC
    Biotechnol Bioeng; 2007 Aug; 97(6):1550-61. PubMed ID: 17216655
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A framework for multidimensional modelling of activity and structure of multispecies biofilms.
    Xavier JB; Picioreanu C; van Loosdrecht MC
    Environ Microbiol; 2005 Aug; 7(8):1085-103. PubMed ID: 16011747
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomass evolution in porous media and its effects on permeability under starvation conditions.
    Kim DS; Fogler HS
    Biotechnol Bioeng; 2000 Jul; 69(1):47-56. PubMed ID: 10820330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential application of monolith packed columns as bioreactors, control of biofilm formation.
    Ebrahimi S; Kleerebezem R; Kreutzer MT; Kapteijn F; Moulijn JA; Heijnen JJ; van Loosdrecht MC
    Biotechnol Bioeng; 2006 Feb; 93(2):238-45. PubMed ID: 16267850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of orthophosphate addition on biofilm development in drinking water distribution systems.
    Gouider M; Bouzid J; Sayadi S; Montiel A
    J Hazard Mater; 2009 Aug; 167(1-3):1198-202. PubMed ID: 19269738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical method for long-term and large-scale monitoring of spatial biofilm development.
    Milferstedt K; Pons MN; Morgenroth E
    Biotechnol Bioeng; 2006 Jul; 94(4):773-82. PubMed ID: 16477662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oil bio-degradation in permeable pavements by microbial communities.
    Newman AP; Pratt CJ; Coupe SJ; Cresswell N
    Water Sci Technol; 2002; 45(7):51-6. PubMed ID: 11989892
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conduction-based modeling of the biofilm anode of a microbial fuel cell.
    Kato Marcus A; Torres CI; Rittmann BE
    Biotechnol Bioeng; 2007 Dec; 98(6):1171-82. PubMed ID: 17570714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of a biofilm on solute diffusion in fractured porous media.
    Charbonneau A; Novakowski K; Ross N
    J Contam Hydrol; 2006 May; 85(3-4):212-28. PubMed ID: 16564602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The impact of methanogenesis on flow and transport in coarse sand.
    Ye S; Sleep BE; Chien C
    J Contam Hydrol; 2009 Jan; 103(1-2):48-57. PubMed ID: 18996615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of biofilm on the transport of fullerene (C60) nanoparticles in porous media.
    Tong M; Ding J; Shen Y; Zhu P
    Water Res; 2010 Feb; 44(4):1094-103. PubMed ID: 19875145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D finite element model of biofilm detachment using real biofilm structures from CLSM data.
    Böl M; Möhle RB; Haesner M; Neu TR; Horn H; Krull R
    Biotechnol Bioeng; 2009 May; 103(1):177-86. PubMed ID: 19191328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors.
    Tijhuis L; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1994 Aug; 44(5):595-608. PubMed ID: 18618795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A microscale model of bacterial and biofilm dynamics in porous media.
    Dillon R; Fauci L
    Biotechnol Bioeng; 2000 Jun; 68(5):536-47. PubMed ID: 10797240
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chapter 4: In vitro biofilm models: an overview.
    McBain AJ
    Adv Appl Microbiol; 2009; 69():99-132. PubMed ID: 19729092
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of permeable biofilm on micro- and macro-scale flow and transport in bioclogged pores.
    Deng W; Cardenas MB; Kirk MF; Altman SJ; Bennett PC
    Environ Sci Technol; 2013 Oct; 47(19):11092-8. PubMed ID: 23971830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.