These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 1931438)

  • 61. Metabolization of iron by plant cells using O-Trensox, a high-affinity abiotic iron-chelating agent.
    Caris C; Baret P; Beguin C; Serratrice G; Pierre JL; Laulhère JP
    Biochem J; 1995 Dec; 312 ( Pt 3)(Pt 3):879-85. PubMed ID: 8554534
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake.
    Bienfait HF
    J Bioenerg Biomembr; 1985 Apr; 17(2):73-83. PubMed ID: 3158648
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Stages in iron storage in the ferritin of Escherichia coli (EcFtnA): analysis of Mössbauer spectra reveals a new intermediate.
    Bauminger ER; Treffry A; Quail MA; Zhao Z; Nowik I; Harrison PM
    Biochemistry; 1999 Jun; 38(24):7791-802. PubMed ID: 10387019
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The utilization of iron and its complexes by mammalian mitochondria.
    Barnes R; Connelly JL; Jones OT
    Biochem J; 1972 Aug; 128(5):1043-55. PubMed ID: 4345350
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Deferoxamine pharmacokinetics.
    Porter JB
    Semin Hematol; 2001 Jan; 38(1 Suppl 1):63-8. PubMed ID: 11206963
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Mechanisms of ferric and ferrous iron uptake by Bifidobacterium bifidum var. pennsylvanicus.
    Bezkorovainy A; Topouzian N; Miller-Catchpole R
    Clin Physiol Biochem; 1986; 4(2):150-8. PubMed ID: 3698473
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Metabolic utilization of 57Fe-labeled coprogen in Neurospora crassa. An in vivo Mössbauer study.
    Matzanke BF; Bill E; Müller GI; Trautwein AX; Winkelmann G
    Eur J Biochem; 1987 Feb; 162(3):643-50. PubMed ID: 2951253
    [TBL] [Abstract][Full Text] [Related]  

  • 68. FoxB of Pseudomonas aeruginosa functions in the utilization of the xenosiderophores ferrichrome, ferrioxamine B, and schizokinen: evidence for transport redundancy at the inner membrane.
    Cuív PO; Keogh D; Clarke P; O'Connell M
    J Bacteriol; 2007 Jan; 189(1):284-7. PubMed ID: 17056746
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Carotenoids of Erwinia herbicola and an Escherichia coli HB101 strain carrying the Erwinia herbicola carotenoid gene cluster.
    Hundle BS; Beyer P; Kleinig H; Englert G; Hearst JE
    Photochem Photobiol; 1991 Jul; 54(1):89-93. PubMed ID: 1946693
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Iron accumulation, iron-mediated toxicity and altered levels of ferritin and transferrin receptor in cultured astrocytes during incubation with ferric ammonium citrate.
    Hoepken HH; Korten T; Robinson SR; Dringen R
    J Neurochem; 2004 Mar; 88(5):1194-202. PubMed ID: 15009675
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Iron acquisition systems for ferric hydroxamates, haemin and haemoglobin in Listeria monocytogenes.
    Jin B; Newton SM; Shao Y; Jiang X; Charbit A; Klebba PE
    Mol Microbiol; 2006 Feb; 59(4):1185-98. PubMed ID: 16430693
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Stereochemical aspects of iron transport in Mycelia sterilia EP-76.
    Adjimani JP; Emery T
    J Bacteriol; 1988 Mar; 170(3):1377-9. PubMed ID: 2963807
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Thermo-FTIR spectroscopic study of the siderophore ferrioxamine B: spectral analysis and stereochemical implications of iron chelation, pH, and temperature.
    Siebner-Freibach H; Yariv S; Lapides Y; Hadar Y; Chen Y
    J Agric Food Chem; 2005 May; 53(9):3434-43. PubMed ID: 15853384
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Genomics of iron acquisition in the plant pathogen Erwinia amylovora: insights in the biosynthetic pathway of the siderophore desferrioxamine E.
    Smits TH; Duffy B
    Arch Microbiol; 2011 Oct; 193(10):693-9. PubMed ID: 21814817
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Escherichia coli ferredoxin-NADP+ reductase and oxygen-insensitive nitroreductase are capable of functioning as ferric reductase and of driving the Fenton reaction.
    Takeda K; Sato J; Goto K; Fujita T; Watanabe T; Abo M; Yoshimura E; Nakagawa J; Abe A; Kawasaki S; Niimura Y
    Biometals; 2010 Aug; 23(4):727-37. PubMed ID: 20407804
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Revisiting the iron pools in cucumber roots: identification and localization.
    Kovács K; Pechoušek J; Machala L; Zbořil R; Klencsár Z; Solti Á; Tóth B; Müller B; Pham HD; Kristóf Z; Fodor F
    Planta; 2016 Jul; 244(1):167-79. PubMed ID: 27002973
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Potential role for extracellular glutathione-dependent ferric reductase in utilization of environmental and host ferric compounds by Histoplasma capsulatum.
    Timmerman MM; Woods JP
    Infect Immun; 2001 Dec; 69(12):7671-8. PubMed ID: 11705947
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Separation of Escherichia adecarboxylata from the "Erwinia herbicola-Enterobacter agglomerans" complex and from the other Enterobacteriaceae by nucleic acid and protein electrophoretic techniques.
    Izard D; Mergaert J; Gavini F; Beji A; Kersters K; De Ley J; Leclerc H
    Ann Inst Pasteur Microbiol (1985); 1985; 136B(2):151-68. PubMed ID: 4083833
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Non-transferrin-bound iron and tumor cells.
    Anghileri LJ; Thouvenot P
    Anticancer Res; 1997; 17(4A):2529-33. PubMed ID: 9252675
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The mammalian transferrin-independent iron transport system may involve a surface ferrireductase activity.
    Jordan I; Kaplan J
    Biochem J; 1994 Sep; 302 ( Pt 3)(Pt 3):875-9. PubMed ID: 7945215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.