BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 19317392)

  • 1. Segmented nanofibrils of spiral silk in Uloborus walckenaerius spider.
    Huang Z; Liao X; Yin G; Kang Y; Yao Y
    J Phys Chem B; 2009 Apr; 113(15):5092-7. PubMed ID: 19317392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmented nanofibers of spider dragline silk: atomic force microscopy and single-molecule force spectroscopy.
    Oroudjev E; Soares J; Arcdiacono S; Thompson JB; Fossey SA; Hansma HG
    Proc Natl Acad Sci U S A; 2002 Apr; 99 Suppl 2(Suppl 2):6460-5. PubMed ID: 11959907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular nanosprings in spider capture-silk threads.
    Becker N; Oroudjev E; Mutz S; Cleveland JP; Hansma PK; Hayashi CY; Makarov DE; Hansma HG
    Nat Mater; 2003 Apr; 2(4):278-83. PubMed ID: 12690403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing conditions for the formation of spider silk microspheres.
    Lammel A; Schwab M; Slotta U; Winter G; Scheibel T
    ChemSusChem; 2008; 1(5):413-6. PubMed ID: 18702135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775).
    Blackledge TA; Hayashi CY
    J Exp Biol; 2006 Jul; 209(Pt 13):2452-61. PubMed ID: 16788028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spider minor ampullate silk proteins are constituents of prey wrapping silk in the cob weaver Latrodectus hesperus.
    La Mattina C; Reza R; Hu X; Falick AM; Vasanthavada K; McNary S; Yee R; Vierra CA
    Biochemistry; 2008 Apr; 47(16):4692-700. PubMed ID: 18376847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adhesive efficiency of spider prey capture threads.
    Opell BD; Schwend HS
    Zoology (Jena); 2009; 112(1):16-26. PubMed ID: 18783928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of supercontraction in spider silk: structure-function relationship from tarantulas to orb-weavers.
    Boutry C; Blackledge TA
    J Exp Biol; 2010 Oct; 213(Pt 20):3505-14. PubMed ID: 20889831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silk genes and silk gene expression in the spider Tengella perfuga (Zoropsidae), including a potential cribellar spidroin (CrSp).
    Correa-Garhwal SM; Chaw RC; Clarke TH; Alaniz LG; Chan FS; Alfaro RE; Hayashi CY
    PLoS One; 2018; 13(9):e0203563. PubMed ID: 30235223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructure of insect and spider cocoon silks.
    Hakimi O; Knight DP; Knight MM; Grahn MF; Vadgama P
    Biomacromolecules; 2006 Oct; 7(10):2901-8. PubMed ID: 17025368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophobic and Hofmeister effects on the adhesion of spider silk proteins onto solid substrates: an AFM-based single-molecule study.
    Geisler M; Pirzer T; Ackerschott C; Lud S; Garrido J; Scheibel T; Hugel T
    Langmuir; 2008 Feb; 24(4):1350-5. PubMed ID: 18041854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of superior spider silk: from nanostructure to mechanical properties.
    Du N; Liu XY; Narayanan J; Li L; Lim ML; Li D
    Biophys J; 2006 Dec; 91(12):4528-35. PubMed ID: 16950851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volume constancy during stretching of spider silk.
    Guinea GV; Pérez-Rigueiro J; Plaza GR; Elices M
    Biomacromolecules; 2006 Jul; 7(7):2173-7. PubMed ID: 16827584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [An analysis of the secondary structure of spider spidroins I and II belonging to different species].
    Ragulina LE; Makeev VIu; Esipova NG; Tumanian VG; Vlasov PK; Bogush VG; Debabov VG
    Biofizika; 2004; 49(6):1147-9. PubMed ID: 15612562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spider flagelliform silk: lessons in protein design, gene structure, and molecular evolution.
    Hayashi CY; Lewis RV
    Bioessays; 2001 Aug; 23(8):750-6. PubMed ID: 11494324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silk fibers and silk-producing organs of Harpactea rubicunda (C. L. Koch 1838) (Araneae, Dysderidae).
    Hajer J; Malý J; Reháková D
    Microsc Res Tech; 2013 Jan; 76(1):28-35. PubMed ID: 23034869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proline and processing of spider silks.
    Liu Y; Sponner A; Porter D; Vollrath F
    Biomacromolecules; 2008 Jan; 9(1):116-21. PubMed ID: 18052126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biopolymers: shape memory in spider draglines.
    Emile O; Le Floch A; Vollrath F
    Nature; 2006 Mar; 440(7084):621. PubMed ID: 16572162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization and evolutionary study of spider tubuliform (eggcase) silk protein.
    Tian M; Lewis RV
    Biochemistry; 2005 Jun; 44(22):8006-12. PubMed ID: 15924419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular studies of a novel dragline silk from a nursery web spider, Euprosthenops sp. (Pisauridae).
    Pouchkina-Stantcheva NN; McQueen-Mason SJ
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Aug; 138(4):371-6. PubMed ID: 15325337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.