BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 19317403)

  • 1. Process of accumulation of metal ions on the interior surface of apo-ferritin: crystal structures of a series of apo-ferritins containing variable quantities of Pd(II) ions.
    Ueno T; Abe M; Hirata K; Abe S; Suzuki M; Shimizu N; Yamamoto M; Takata M; Watanabe Y
    J Am Chem Soc; 2009 Apr; 131(14):5094-100. PubMed ID: 19317403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of accumulation and incorporation of organometallic Pd complexes into the protein nanocage of apo-ferritin.
    Abe S; Hikage T; Watanabe Y; Kitagawa S; Ueno T
    Inorg Chem; 2010 Aug; 49(15):6967-73. PubMed ID: 20586408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of the coordination structure of organometallic palladium complexes in an apo-ferritin cage.
    Abe S; Niemeyer J; Abe M; Takezawa Y; Ueno T; Hikage T; Erker G; Watanabe Y
    J Am Chem Soc; 2008 Aug; 130(32):10512-4. PubMed ID: 18636721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Definite coordination arrangement of organometallic palladium complexes accumulated on the designed interior surface of apo-ferritin.
    Wang Z; Takezawa Y; Aoyagi H; Abe S; Hikage T; Watanabe Y; Kitagawa S; Ueno T
    Chem Commun (Camb); 2011 Jan; 47(1):170-2. PubMed ID: 20730233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of organometallic Ru complexes into apo-ferritin cage.
    Takezawa Y; Böckmann P; Sugi N; Wang Z; Abe S; Murakami T; Hikage T; Erker G; Watanabe Y; Kitagawa S; Ueno T
    Dalton Trans; 2011 Mar; 40(10):2190-5. PubMed ID: 21113534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidation of metal-ion accumulation induced by hydrogen bonds on protein surfaces by using porous lysozyme crystals containing Rh(III) ions as the model surfaces.
    Ueno T; Abe S; Koshiyama T; Ohki T; Hikage T; Watanabe Y
    Chemistry; 2010 Mar; 16(9):2730-40. PubMed ID: 20146274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution X-ray structures of human apoferritin H-chain mutants correlated with their activity and metal-binding sites.
    Toussaint L; Bertrand L; Hue L; Crichton RR; Declercq JP
    J Mol Biol; 2007 Jan; 365(2):440-52. PubMed ID: 17070541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin.
    Okuda M; Iwahori K; Yamashita I; Yoshimura H
    Biotechnol Bioeng; 2003 Oct; 84(2):187-94. PubMed ID: 12966575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High resolution crystal structures of amphibian red-cell L ferritin: potential roles for structural plasticity and solvation in function.
    Trikha J; Theil EC; Allewell NM
    J Mol Biol; 1995 May; 248(5):949-67. PubMed ID: 7760335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased sensitivity to changes in the concentration of metal ions as the basis for the hyperactivity of DtxR(E175K).
    D'Aquino JA; Denninger AR; Moulin AG; D'Aquino KE; Ringe D
    J Mol Biol; 2009 Jul; 390(1):112-23. PubMed ID: 19433095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and catalytic reaction of Au/Pd bimetallic nanoparticles in apo-ferritin.
    Suzuki M; Abe M; Ueno T; Abe S; Goto T; Toda Y; Akita T; Yamada Y; Watanabe Y
    Chem Commun (Camb); 2009 Aug; (32):4871-3. PubMed ID: 19652809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of transition metal-binding sites from apo protein structures.
    Babor M; Gerzon S; Raveh B; Sobolev V; Edelman M
    Proteins; 2008 Jan; 70(1):208-17. PubMed ID: 17657805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of human ferritin L chain.
    Wang Z; Li C; Ellenburg M; Soistman E; Ruble J; Wright B; Ho JX; Carter DC
    Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):800-6. PubMed ID: 16790936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analysis of haemin demetallation by L-chain apoferritins.
    de Val N; Declercq JP; Lim CK; Crichton RR
    J Inorg Biochem; 2012 Jul; 112():77-84. PubMed ID: 22561545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The crystal structure of ferritin from Helicobacter pylori reveals unusual conformational changes for iron uptake.
    Cho KJ; Shin HJ; Lee JH; Kim KJ; Park SS; Lee Y; Lee C; Park SS; Kim KH
    J Mol Biol; 2009 Jul; 390(1):83-98. PubMed ID: 19427319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A capillary electrophoresis method for studying apo, holo, recombinant, and subunit dissociated ferritins.
    Zhao Z; Malik A; Lee ML; Watt GD
    Anal Biochem; 1994 Apr; 218(1):47-54. PubMed ID: 8053567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directing noble metal ion chemistry within a designed ferritin protein.
    Butts CA; Swift J; Kang SG; Di Costanzo L; Christianson DW; Saven JG; Dmochowski IJ
    Biochemistry; 2008 Dec; 47(48):12729-39. PubMed ID: 18991401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanosized Pd37(CO)28{P(p-Tolyl)3}12 containing geometrically unprecedented central 23-atom interpenetrating tri-icosahedral palladium kernel of double icosahedral units: its postulated metal-core evolution and resulting stereochemical implications.
    Mednikov EG; Dahl LF
    J Am Chem Soc; 2008 Nov; 130(44):14813-21. PubMed ID: 18839959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymerization of phenylacetylene by rhodium complexes within a discrete space of apo-ferritin.
    Abe S; Hirata K; Ueno T; Morino K; Shimizu N; Yamamoto M; Takata M; Yashima E; Watanabe Y
    J Am Chem Soc; 2009 May; 131(20):6958-60. PubMed ID: 19453195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of metal ion on the structural stability of tumour suppressor protein p53 DNA-binding domain.
    Xue Y; Wang S; Feng X
    J Biochem; 2009 Aug; 146(2):193-200. PubMed ID: 19346293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.