These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 19317460)
1. Icosahedral face-centered cubic Fe nanoparticles: facile synthesis and characterization with aberration-corrected TEM. Ling T; Xie L; Zhu J; Yu H; Ye H; Yu R; Cheng Z; Liu L; Liu L; Yang G; Cheng Z; Wang Y; Ma X Nano Lett; 2009 Apr; 9(4):1572-6. PubMed ID: 19317460 [TBL] [Abstract][Full Text] [Related]
2. Identification of magnetic properties of few nm sized FePt crystalline particles by characterizing the intrinsic atom order using aberration corrected S/TEM. Biskupek J; Jinschek JR; Wiedwald U; Bendele M; Han L; Ziemann P; Kaiser U Ultramicroscopy; 2010 Jun; 110(7):820-5. PubMed ID: 20303666 [TBL] [Abstract][Full Text] [Related]
3. Chemical synthesis of monodisperse Fe-Ni nanoparticles via a diffusion-based approach. Chen Y; She H; Luo X; Yue GH; Mi WB; Bai HL; Peng DL J Nanosci Nanotechnol; 2010 May; 10(5):3053-9. PubMed ID: 20358898 [TBL] [Abstract][Full Text] [Related]
4. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Lee Y; Choi JR; Lee KJ; Stott NE; Kim D Nanotechnology; 2008 Oct; 19(41):415604. PubMed ID: 21832649 [TBL] [Abstract][Full Text] [Related]
6. Transmission electron microscopy characterization of colloidal copper nanoparticles and their chemical reactivity. Cheng G; Hight Walker AR Anal Bioanal Chem; 2010 Feb; 396(3):1057-69. PubMed ID: 19841909 [TBL] [Abstract][Full Text] [Related]
7. Discovery of face-centered-cubic ruthenium nanoparticles: facile size-controlled synthesis using the chemical reduction method. Kusada K; Kobayashi H; Yamamoto T; Matsumura S; Sumi N; Sato K; Nagaoka K; Kubota Y; Kitagawa H J Am Chem Soc; 2013 Apr; 135(15):5493-6. PubMed ID: 23557199 [TBL] [Abstract][Full Text] [Related]
8. The synthesis and characterization of platinum nanoparticles: a method of controlling the size and morphology. Long NV; Chien ND; Hayakawa T; Hirata H; Lakshminarayana G; Nogami M Nanotechnology; 2010 Jan; 21(3):035605. PubMed ID: 19966396 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and Characterization of Graphite-Encapsulated Iron Nanoparticles from Ball Milling-Assisted Low-Pressure Chemical Vapor Deposition. Ağaoğulları D; Madsen SJ; Ögüt B; Koh AL; Sinclair R Carbon N Y; 2017 Nov; 124():170-179. PubMed ID: 29434378 [TBL] [Abstract][Full Text] [Related]
10. Room-temperature ferromagnetism in doped face-centered cubic fe nanoparticles. Wei B; Shima M; Pati R; Nayak SK; Singh DJ; Ma R; Li Y; Bando Y; Nasu S; Ajayan PM Small; 2006 Jun; 2(6):804-9. PubMed ID: 17193125 [TBL] [Abstract][Full Text] [Related]
11. Ruthenium Nanoframes in the Face-Centered Cubic Phase: Facile Synthesis and Their Enhanced Catalytic Performance. Zhao M; Hood ZD; Vara M; Gilroy KD; Chi M; Xia Y ACS Nano; 2019 Jun; 13(6):7241-7251. PubMed ID: 31145858 [TBL] [Abstract][Full Text] [Related]
12. Characterization, Antibacterial and Antioxidant Properties of Silver Nanoparticles Synthesized from Aqueous Extracts of Otunola GA; Afolayan AJ; Ajayi EO; Odeyemi SW Pharmacogn Mag; 2017 Jul; 13(Suppl 2):S201-S208. PubMed ID: 28808381 [TBL] [Abstract][Full Text] [Related]
13. Predicting the shape and structure of face-centered cubic gold nanocrystals smaller than 3 nm. Barnard AS; Curtiss LA Chemphyschem; 2006 Jul; 7(7):1544-53. PubMed ID: 16755641 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and Characterization of Ti and TiO₂ Nanoparticles by Pulsed Wire Evaporation and Transmission Electron Microscopy. Seo HS; Park HS J Nanosci Nanotechnol; 2018 Oct; 18(10):6823-6829. PubMed ID: 29954499 [TBL] [Abstract][Full Text] [Related]
15. Fabrication, optimization, and characterization of noble silver nanoparticles from sugarcane leaf (Saccharum officinarum) extract for antifungal application. Velu M; Lee JH; Chang WS; Lovanh N; Park YJ; Jayanthi P; Palanivel V; Oh BT 3 Biotech; 2017 Jun; 7(2):147. PubMed ID: 28597158 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and characterization of ultra-small magnetic FeNi/G and NiCo/G nanoparticles. Castrillón M; Mayoral A; Magén C; Meier JG; Marquina C; Irusta S; Santamaría J Nanotechnology; 2012 Mar; 23(8):085601. PubMed ID: 22293364 [TBL] [Abstract][Full Text] [Related]
17. Fast and highly efficient catalytic degradation of dyes using κ-carrageenan stabilized silver nanoparticles nanocatalyst. Pandey S; Do JY; Kim J; Kang M Carbohydr Polym; 2020 Feb; 230():115597. PubMed ID: 31887912 [TBL] [Abstract][Full Text] [Related]
18. Fe Core-Carbon Shell Nanoparticles as Advanced MRI Contrast Enhancer. Chaudhary RP; Kangasniemi K; Takahashi M; Mohanty SK; Koymen AR J Funct Biomater; 2017 Oct; 8(4):. PubMed ID: 28991207 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and Characterization of Cadmium Sulfide Nanoparticles by Chemical Precipitation Method. Devi RA; Latha M; Velumani S; Oza G; Reyes-Figueroa P; Rohini M; Becerril-Juarez IG; Lee JH; Yi J J Nanosci Nanotechnol; 2015 Nov; 15(11):8434-9. PubMed ID: 26726530 [TBL] [Abstract][Full Text] [Related]
20. Icosahedral quasicrystals of intermetallic compounds are icosahedral twins of cubic crystals of three kinds, consisting of large (about 5000 atoms) icosahedral complexes in either a cubic body-centered or a cubic face-centered arrangement or smaller (about 1350 atoms) icosahedral complexes in the beta-tungsten arrangement. Pauling L Proc Natl Acad Sci U S A; 1989 Nov; 86(22):8595-9. PubMed ID: 16594078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]