BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 19317511)

  • 1. Mutational analysis of Mycobacterium UvrD1 identifies functional groups required for ATP hydrolysis, DNA unwinding, and chemomechanical coupling.
    Sinha KM; Glickman MS; Shuman S
    Biochemistry; 2009 May; 48(19):4019-30. PubMed ID: 19317511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Domain requirements for DNA unwinding by mycobacterial UvrD2, an essential DNA helicase.
    Sinha KM; Stephanou NC; Unciuleac MC; Glickman MS; Shuman S
    Biochemistry; 2008 Sep; 47(36):9355-64. PubMed ID: 18702526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-directed mutations in motif VI of Escherichia coli DNA helicase II result in multiple biochemical defects: evidence for the involvement of motif VI in the coupling of ATPase and DNA binding activities via conformational changes.
    Hall MC; Ozsoy AZ; Matson SW
    J Mol Biol; 1998 Mar; 277(2):257-71. PubMed ID: 9514760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of the ATP-binding site of helicase IV from Escherichia coli.
    Dubaele S; Lourdel C; Chène P
    Biochem Biophys Res Commun; 2006 Mar; 341(3):828-36. PubMed ID: 16442499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mycobacterial UvrD1 is a Ku-dependent DNA helicase that plays a role in multiple DNA repair events, including double-strand break repair.
    Sinha KM; Stephanou NC; Gao F; Glickman MS; Shuman S
    J Biol Chem; 2007 May; 282(20):15114-25. PubMed ID: 17376770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mycobacterium smegmatis Lhr Is a DNA-dependent ATPase and a 3'-to-5' DNA translocase and helicase that prefers to unwind 3'-tailed RNA:DNA hybrids.
    Ordonez H; Shuman S
    J Biol Chem; 2013 May; 288(20):14125-14134. PubMed ID: 23549043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A two-site kinetic mechanism for ATP binding and hydrolysis by E. coli Rep helicase dimer bound to a single-stranded oligodeoxynucleotide.
    Hsieh J; Moore KJ; Lohman TM
    J Mol Biol; 1999 Apr; 288(2):255-74. PubMed ID: 10329141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An oligomeric form of E. coli UvrD is required for optimal helicase activity.
    Ali JA; Maluf NK; Lohman TM
    J Mol Biol; 1999 Nov; 293(4):815-34. PubMed ID: 10543970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling DNA-binding and ATP hydrolysis in Escherichia coli RecQ: role of a highly conserved aromatic-rich sequence.
    Zittel MC; Keck JL
    Nucleic Acids Res; 2005; 33(22):6982-91. PubMed ID: 16340008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations in motif II of Escherichia coli DNA helicase II render the enzyme nonfunctional in both mismatch repair and excision repair with differential effects on the unwinding reaction.
    Brosh RM; Matson SW
    J Bacteriol; 1995 Oct; 177(19):5612-21. PubMed ID: 7559350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Dimer of Escherichia coli UvrD is the active form of the helicase in vitro.
    Maluf NK; Fischer CJ; Lohman TM
    J Mol Biol; 2003 Jan; 325(5):913-35. PubMed ID: 12527299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of DnaB helicase of Escherichia coli: structural domains involved in ATP hydrolysis, DNA binding, and oligomerization.
    Biswas EE; Biswas SB
    Biochemistry; 1999 Aug; 38(34):10919-28. PubMed ID: 10460147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of mycobacterial 3'-to-5' RNA:DNA helicase Lhr bound to a ssDNA tracking strand highlights distinctive features of a novel family of bacterial helicases.
    Ejaz A; Ordonez H; Jacewicz A; Ferrao R; Shuman S
    Nucleic Acids Res; 2018 Jan; 46(1):442-455. PubMed ID: 29165676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-site mechanism for ATP hydrolysis by the asymmetric Rep dimer P2S as revealed by site-specific inhibition with ADP-A1F4.
    Wong I; Lohman TM
    Biochemistry; 1997 Mar; 36(11):3115-25. PubMed ID: 9115987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and mutational analysis of the RecQ core of the bloom syndrome protein.
    Janscak P; Garcia PL; Hamburger F; Makuta Y; Shiraishi K; Imai Y; Ikeda H; Bickle TA
    J Mol Biol; 2003 Jun; 330(1):29-42. PubMed ID: 12818200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The QRxGRxGRxxxG motif of the vaccinia virus DExH box RNA helicase NPH-II is required for ATP hydrolysis and RNA unwinding but not for RNA binding.
    Gross CH; Shuman S
    J Virol; 1996 Mar; 70(3):1706-13. PubMed ID: 8627691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA helicase II of Escherichia coli. Characterization of the single-stranded DNA-dependent NTPase and helicase activities.
    Matson SW; George JW
    J Biol Chem; 1987 Feb; 262(5):2066-76. PubMed ID: 3029063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycobacterium tuberculosis UvrD1 and UvrD2 helicases unwind G-quadruplex DNA.
    Saha T; Shukla K; Thakur RS; Desingu A; Nagaraju G
    FEBS J; 2019 Jun; 286(11):2062-2086. PubMed ID: 30821905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mycobacterium smegmatis RqlH defines a novel clade of bacterial RecQ-like DNA helicases with ATP-dependent 3'-5' translocase and duplex unwinding activities.
    Ordonez H; Unciuleac M; Shuman S
    Nucleic Acids Res; 2012 May; 40(10):4604-14. PubMed ID: 22287622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular and Functional Characterization of RecD, a Novel Member of the SF1 Family of Helicases, from Mycobacterium tuberculosis.
    Dewhare SS; Umesh TG; Muniyappa K
    J Biol Chem; 2015 May; 290(19):11948-68. PubMed ID: 25802334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.