These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 19317512)
1. Kinetic glutathione chemoassay to quantify thiol reactivity of organic electrophiles--application to alpha,beta-unsaturated ketones, acrylates, and propiolates. Böhme A; Thaens D; Paschke A; Schüürmann G Chem Res Toxicol; 2009 Apr; 22(4):742-50. PubMed ID: 19317512 [TBL] [Abstract][Full Text] [Related]
2. Structural alerts for the excess toxicity of acrylates, methacrylates, and propiolates derived from their short-term and long-term bacterial toxicity. Blaschke U; Eismann K; Böhme A; Paschke A; Schüürmann G Chem Res Toxicol; 2012 Jan; 25(1):170-80. PubMed ID: 22117088 [TBL] [Abstract][Full Text] [Related]
3. Thiol reactivity and its impact on the ciliate toxicity of α,β-unsaturated aldehydes, ketones, and esters. Böhme A; Thaens D; Schramm F; Paschke A; Schüürmann G Chem Res Toxicol; 2010 Dec; 23(12):1905-12. PubMed ID: 20923215 [TBL] [Abstract][Full Text] [Related]
4. Predicting Michael-acceptor reactivity and toxicity through quantum chemical transition-state calculations. Mulliner D; Wondrousch D; Schüürmann G Org Biomol Chem; 2011 Dec; 9(24):8400-12. PubMed ID: 22048735 [TBL] [Abstract][Full Text] [Related]
5. Experimental reactivity parameters for toxicity modeling: application to the acute aquatic toxicity of SN2 electrophiles to Tetrahymena pyriformis. Roberts DW; Schultz TW; Wolf EM; Aptula AO Chem Res Toxicol; 2010 Jan; 23(1):228-34. PubMed ID: 19928804 [TBL] [Abstract][Full Text] [Related]
6. Chemoavailability of Organic Electrophiles: Impact of Hydrophobicity and Reactivity on Their Aquatic Excess Toxicity. Böhme A; Laqua A; Schüürmann G Chem Res Toxicol; 2016 Jun; 29(6):952-62. PubMed ID: 27096880 [TBL] [Abstract][Full Text] [Related]
7. Reactivity-based toxicity modelling of five-membered heterocyclic compounds: application to Tetrahymena pyriformis. Schultz TW; Sparfkin CL; Aptula AO SAR QSAR Environ Res; 2010 Oct; 21(7-8):681-91. PubMed ID: 21120756 [TBL] [Abstract][Full Text] [Related]
8. Abiotic sulfhydryl reactivity: a predictor of aquatic toxicity for carbonyl-containing alpha,beta-unsaturated compounds. Yarbrough JW; Schultz TW Chem Res Toxicol; 2007 Mar; 20(3):558-62. PubMed ID: 17319700 [TBL] [Abstract][Full Text] [Related]
9. Examination of Michael addition reactivity towards glutathione by transition-state calculations. Schwöbel JA; Madden JC; Cronin MT SAR QSAR Environ Res; 2010 Oct; 21(7-8):693-710. PubMed ID: 21120757 [TBL] [Abstract][Full Text] [Related]
10. Reactivity and aquatic toxicity of aromatic compounds transformable to quinone-type Michael acceptors. Bajot F; Cronin MT; Roberts DW; Schultz TW SAR QSAR Environ Res; 2011 Mar; 22(1-2):51-65. PubMed ID: 21391141 [TBL] [Abstract][Full Text] [Related]
11. Chemoassay screening of DNA-reactive mutagenicity with 4-(4-nitrobenzyl)pyridine - application to epoxides, oxetanes, and sulfur heterocycles. Thaens D; Heinzelmann D; Böhme A; Paschke A; Schüürmann G Chem Res Toxicol; 2012 Oct; 25(10):2092-102. PubMed ID: 22889134 [TBL] [Abstract][Full Text] [Related]
12. Structure-activity relationships for hepatocyte toxicity and electrophilic reactivity of alpha,beta-unsaturated esters, acrylates and methacrylates. Chan K; O'Brien PJ J Appl Toxicol; 2008 Nov; 28(8):1004-15. PubMed ID: 18615533 [TBL] [Abstract][Full Text] [Related]
14. Structure-toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing, alpha,beta-unsaturated chemicals. Schultz TW; Netzeva TI; Roberts DW; Cronin MT Chem Res Toxicol; 2005 Feb; 18(2):330-41. PubMed ID: 15720140 [TBL] [Abstract][Full Text] [Related]
15. Identification of reactive toxicants: structure-activity relationships for amides. Schultz TW; Yarbrough JW; Koss SK Cell Biol Toxicol; 2006 Sep; 22(5):339-49. PubMed ID: 16845611 [TBL] [Abstract][Full Text] [Related]
16. Time dependence in mixture toxicity with soft electrophiles: 1. Combined effects of selected SN2- and SNAr-reactive agents with a nonpolar narcotic. Gagan EM; Hull MW; Schultz TW; Pöch G; Dawson DA Arch Environ Contam Toxicol; 2007 Apr; 52(3):283-93. PubMed ID: 17253098 [TBL] [Abstract][Full Text] [Related]
17. Structure-activity relationships for abiotic thiol reactivity and aquatic toxicity of halo-substituted carbonyl compounds. Schultz TW; Ralston KE; Roberts DW; Veith GD; Aptula AO SAR QSAR Environ Res; 2007; 18(1-2):21-9. PubMed ID: 17365956 [TBL] [Abstract][Full Text] [Related]
18. Toxicity to Tetrahymena and abiotic thiol reactivity of aromatic isothiocyanates. Schultz TW; Yarbrough JW; Woldemeskel M Cell Biol Toxicol; 2005; 21(3-4):181-9. PubMed ID: 16328896 [TBL] [Abstract][Full Text] [Related]
19. Model Suite for Predicting the Aquatic Toxicity of α,β-Unsaturated Esters Triggered by Their Chemoavailability. Mulliner D; Schüürmann G Mol Inform; 2013 Jan; 32(1):98-107. PubMed ID: 27481027 [TBL] [Abstract][Full Text] [Related]
20. Chemistry-toxicity relationships for the effects of di- and trihydroxybenzenes to Tetrahymena pyriformis. Aptula AO; Roberts DW; Cronin MT; Schultz TW Chem Res Toxicol; 2005 May; 18(5):844-54. PubMed ID: 15892578 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]