These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 19317529)

  • 1. Levels of self-consistency in the GW approximation.
    Stan A; Dahlen NE; van Leeuwen R
    J Chem Phys; 2009 Mar; 130(11):114105. PubMed ID: 19317529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionization energy of atoms obtained from GW self-energy or from random phase approximation total energies.
    Bruneval F
    J Chem Phys; 2012 May; 136(19):194107. PubMed ID: 22612080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-consistent solution of the Dyson equation for atoms and molecules within a conserving approximation.
    Dahlen NE; van Leeuwen R
    J Chem Phys; 2005 Apr; 122(16):164102. PubMed ID: 15945667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Off-Diagonal Self-Energy Terms and Partially Self-Consistency in GW Calculations for Single Molecules: Efficient Implementation and Quantitative Effects on Ionization Potentials.
    Kaplan F; Weigend F; Evers F; van Setten MJ
    J Chem Theory Comput; 2015 Nov; 11(11):5152-60. PubMed ID: 26574312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionization potentials and electron affinities in the Perdew-Zunger self-interaction corrected density-functional theory.
    Vydrov OA; Scuseria GE
    J Chem Phys; 2005 May; 122(18):184107. PubMed ID: 15918694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient self-consistent treatment of electron correlation within the random phase approximation.
    Bleiziffer P; Heßelmann A; Görling A
    J Chem Phys; 2013 Aug; 139(8):084113. PubMed ID: 24006980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relativistic density-functional all-electron calculations of interconfigurational energies of lanthanide atoms.
    Ren CY
    J Chem Phys; 2004 Dec; 121(22):11073-82. PubMed ID: 15634059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking the Starting Points of the GW Approximation for Molecules.
    Bruneval F; Marques MA
    J Chem Theory Comput; 2013 Jan; 9(1):324-9. PubMed ID: 26589035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles T-matrix calculations of double-ionization energy spectra of atoms and molecules.
    Noguchi Y; Kudo Y; Ishii S; Ohno K
    J Chem Phys; 2005 Oct; 123(14):144112. PubMed ID: 16238379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation energy of many-electron systems: a modified Colle-Salvetti approach.
    Ragot S; Cortona P
    J Chem Phys; 2004 Oct; 121(16):7671-80. PubMed ID: 15485226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the Linearized GW Density Matrix for Molecules.
    Bruneval F
    J Chem Theory Comput; 2019 Jul; 15(7):4069-4078. PubMed ID: 31194540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasiparticle self-consistent GW method for the spectral properties of complex materials.
    Bruneval F; Gatti M
    Top Curr Chem; 2014; 347():99-135. PubMed ID: 24563009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid functionals and GW approximation in the FLAPW method.
    Friedrich C; Betzinger M; Schlipf M; Blügel S; Schindlmayr A
    J Phys Condens Matter; 2012 Jul; 24(29):293201. PubMed ID: 22773268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relativistic Fully Self-Consistent
    Abraham V; Harsha G; Zgid D
    J Chem Theory Comput; 2024 Jun; 20(11):4579-4590. PubMed ID: 38778459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmark of GW Approaches for the GW100 Test Set.
    Caruso F; Dauth M; van Setten MJ; Rinke P
    J Chem Theory Comput; 2016 Oct; 12(10):5076-5087. PubMed ID: 27631585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitation Energies from the Single-Particle Green's Function with the GW Approximation.
    Jin Y; Yang W
    J Phys Chem A; 2019 Apr; 123(14):3199-3204. PubMed ID: 30920830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasiparticle self-consistent GW method: a short summary.
    Kotani T; Schilfgaarde Mv; Faleev SV; Chantis A
    J Phys Condens Matter; 2007 Sep; 19(36):365236. PubMed ID: 21694181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of semicore states in GW calculations for simulating accurately the photoemission spectra of metal phthalocyanine molecules.
    Umari P; Fabris S
    J Chem Phys; 2012 May; 136(17):174310. PubMed ID: 22583233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the GW Approximation with CCSD(T) for Charged Excitations Across the Oligoacenes.
    Rangel T; Hamed SM; Bruneval F; Neaton JB
    J Chem Theory Comput; 2016 Jun; 12(6):2834-42. PubMed ID: 27123935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasiparticle energy spectra of alkali-metal clusters: all-electron first-principles calculations.
    Noguchi Y; Ishii S; Ohno K; Sasaki T
    J Chem Phys; 2008 Sep; 129(10):104104. PubMed ID: 19044905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.