These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 19317640)

  • 41. Anti-inflammatory coating of hernia repair meshes: a 5-rabbit study.
    Bredikhin M; Gil D; Rex J; Cobb W; Reukov V; Vertegel A
    Hernia; 2020 Dec; 24(6):1191-1199. PubMed ID: 32026188
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effects of estrogen, progesterone and polypropylene mesh on vaginal smooth muscle cell proliferation.
    Takacs P; Zhang Y; Jaramillo S; Bardawil T; Candiotti K; Medina CA
    J Smooth Muscle Res; 2010; 46(1):9-15. PubMed ID: 20383030
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Titanised polypropylene meshes: first clinical experience with the implantation in TAPP technique and the results of a survey in 22 German surgical departments].
    Schardey HM; Schopf S; Rudert W; Knappich P; Hernandez-Richter T
    Zentralbl Chir; 2004 Oct; 129(5):363-8. PubMed ID: 15486786
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The myth: in vivo degradation of polypropylene-based meshes.
    Thames SF; White JB; Ong KL
    Int Urogynecol J; 2017 Feb; 28(2):285-297. PubMed ID: 27600700
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Polypropylene synthetic mesh modifies growth of human cells in vitro. An experimental study].
    Duchrow M; Windhövel U; Bethge T; Schwandner O; Markert U; Bruch HP; Broll R
    Chirurg; 2002 Feb; 73(2):154-8; discussion 158-60. PubMed ID: 11974479
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An in vitro study on the biocompatibility of fibroblasts in sterile and non-sterile low-cost and commercial meshes.
    Wiessner R; Gehring A; Kleber T; Ekwelle N; Lorenz R; Richter DU
    Hernia; 2019 Dec; 23(6):1163-1174. PubMed ID: 30949894
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A comparative study of laparoscopic sacrocolpopexy and total vaginal mesh procedure using lightweight polypropylene meshes for prolapse repair.
    Liu CK; Tsai CP; Chou MM; Shen PS; Chen GD; Hung YC; Hung MJ
    Taiwan J Obstet Gynecol; 2014 Dec; 53(4):552-8. PubMed ID: 25510700
    [TBL] [Abstract][Full Text] [Related]  

  • 48. How common are complications following polypropylene mesh, biological xenograft and native tissue surgery for pelvic organ prolapse? A secondary analysis from the PROSPECT trial.
    Reid FM; Elders A; Breeman S; Freeman RM;
    BJOG; 2021 Dec; 128(13):2180-2189. PubMed ID: 34473896
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vitro study of the mechanical performance of hernia mesh under cyclic loading.
    Rynkevic R; Martins P; Pereira F; Ramião N; Fernandes AA
    J Mater Sci Mater Med; 2017 Sep; 28(11):176. PubMed ID: 28956206
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sacrospinous hysteropexy with a low weight transvaginal polypropylene mesh for treatment of complete uterovaginal eversion.
    Achermann APP; Brazão ÉS; Riccetto CLZ; Palma PCR
    Int Braz J Urol; 2019; 45(4):856-857. PubMed ID: 30735341
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tissue-engineered fascia from vaginal fibroblasts for patients needing reconstructive pelvic surgery.
    Hung MJ; Wen MC; Hung CN; Ho ES; Chen GD; Yang VC
    Int Urogynecol J; 2010 Sep; 21(9):1085-93. PubMed ID: 20480140
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surgical meshes coated with mesenchymal stem cells provide an anti-inflammatory environment by a M2 macrophage polarization.
    Blázquez R; Sánchez-Margallo FM; Álvarez V; Usón A; Casado JG
    Acta Biomater; 2016 Feb; 31():221-230. PubMed ID: 26654766
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vivo biomechanical properties of heavy versus light weight monofilament polypropylene meshes. Does the knitting pattern matter?
    Bigozzi MA; Provenzano S; Maeda F; Palma P; Riccetto C
    Neurourol Urodyn; 2017 Jan; 36(1):73-79. PubMed ID: 26436858
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Materials characterization of explanted polypropylene hernia meshes.
    Costello CR; Bachman SL; Ramshaw BJ; Grant SA
    J Biomed Mater Res B Appl Biomater; 2007 Oct; 83(1):44-9. PubMed ID: 17285608
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Treatment and outcome of polypropylene mesh or tape related pain after reconstructive pelvic surgery].
    Wang YQ; Yang X; Wang JL
    Zhonghua Fu Chan Ke Za Zhi; 2016 Dec; 51(12):901-908. PubMed ID: 28057125
    [No Abstract]   [Full Text] [Related]  

  • 56. Impact of human umbilical cord-derived stem cells (HUMSCs) on host responses to a synthetic polypropylene mesh for pelvic floor reconstruction in a rat model.
    Deng M; Ding J; Ai F; Mao M; Zhu L
    Cell Tissue Res; 2020 Dec; 382(3):519-527. PubMed ID: 32876745
    [TBL] [Abstract][Full Text] [Related]  

  • 57. What do we know about titanized polypropylene meshes? An evidence-based review of the literature.
    Köckerling F; Schug-Pass C
    Hernia; 2014 Aug; 18(4):445-57. PubMed ID: 24253381
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Visualization of implanted mesh in the pelvic reconstructive surgery using an X-ray-detectable thread.
    Li H; Shu H; Qiao G; Dai Z
    Arch Gynecol Obstet; 2021 Oct; 304(4):965-973. PubMed ID: 34405286
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Postimplant behavior of lightweight polypropylene meshes in an experimental model of abdominal hernia.
    Bellon JM; Rodriguez M; Garcia-Honduvilla N; Gomez-Gil V; Pascual G; Bujan J
    J Invest Surg; 2008; 21(5):280-7. PubMed ID: 19160136
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of outcomes of single polypropylene mesh in total pelvic floor reconstruction.
    Amrute KV; Eisenberg ER; Rastinehad AR; Kushner L; Badlani GH
    Neurourol Urodyn; 2007; 26(1):53-8. PubMed ID: 17080416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.