These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 19317667)

  • 1. Method for improving sequence coverage uniformity of targeted genomic intervals amplified by LR-PCR using Illumina GA sequencing-by-synthesis technology.
    Harismendy O; Frazer K
    Biotechniques; 2009 Mar; 46(3):229-31. PubMed ID: 19317667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. THOR: targeted high-throughput ortholog reconstructor.
    Bainbridge MN; Warren RL; He A; Bilenky M; Robertson AG; Jones SJ
    Bioinformatics; 2007 Oct; 23(19):2622-4. PubMed ID: 17038343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SNP discovery performance of two second-generation sequencing platforms in the NOD2 gene region.
    Melum E; May S; Schilhabel MB; Thomsen I; Karlsen TH; Rosenstiel P; Schreiber S; Franke A
    Hum Mutat; 2010 Jul; 31(7):875-85. PubMed ID: 20506538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using 454 technology for long-PCR based sequencing of the complete mitochondrial genome from single Haemonchus contortus (Nematoda).
    Jex AR; Hu M; Littlewood DT; Waeschenbach A; Gasser RB
    BMC Genomics; 2008 Jan; 9():11. PubMed ID: 18190685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primer design for PCR and sequencing in high-throughput analysis of SNPs.
    Vieux EF; Kwok PY; Miller RD
    Biotechniques; 2002 Jun; Suppl():28-30, 32. PubMed ID: 12083394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long PCR Product Sequencing (LoPPS): a shotgun-based approach to sequence long PCR products.
    Emonet SF; Grard G; Brisbarre NM; Moureau GN; Temmam S; Charrel RN; de Lamballerie X
    Nat Protoc; 2007; 2(2):340-6. PubMed ID: 17406595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing.
    Abdelkrim J; Robertson B; Stanton JA; Gemmell N
    Biotechniques; 2009 Mar; 46(3):185-92. PubMed ID: 19317661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microsatellite discovery by deep sequencing of enriched genomic libraries.
    Santana Q; Coetzee M; Steenkamp E; Mlonyeni O; Hammond G; Wingfield M; Wingfield B
    Biotechniques; 2009 Mar; 46(3):217-23. PubMed ID: 19317665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 96-plex molecular barcoding for the Illumina Genome Analyzer.
    Kozarewa I; Turner DJ
    Methods Mol Biol; 2011; 733():279-98. PubMed ID: 21431778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target-enrichment through amplification of hairpin-ligated universal targets for next-generation sequencing analysis.
    Singh P; Nayak R; Kwon YM
    Methods Mol Biol; 2011; 733():267-78. PubMed ID: 21431777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome.
    O'Malley RC; Alonso JM; Kim CJ; Leisse TJ; Ecker JR
    Nat Protoc; 2007; 2(11):2910-7. PubMed ID: 18007627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probabilistic base calling of Solexa sequencing data.
    Rougemont J; Amzallag A; Iseli C; Farinelli L; Xenarios I; Naef F
    BMC Bioinformatics; 2008 Oct; 9():431. PubMed ID: 18851737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparing a re-sequencing DNA library of 2 cancer candidate genes using the ligation-by-amplification protocol by two PCR reactions.
    Su Y; Lin L; Tian G; Chen C; Liu T; Xu X; Qi X; Zhang X; Yang H
    Sci China C Life Sci; 2009 May; 52(5):483-91. PubMed ID: 19471873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bar-coded, multiplexed sequencing of targeted DNA regions using the Illumina Genome Analyzer.
    Szelinger S; Kurdoglu A; Craig DW
    Methods Mol Biol; 2011; 700():89-104. PubMed ID: 21204029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of next-generation sequencing technologies in functional genomics.
    Morozova O; Marra MA
    Genomics; 2008 Nov; 92(5):255-64. PubMed ID: 18703132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid quantification of DNA libraries for next-generation sequencing.
    Buehler B; Hogrefe HH; Scott G; Ravi H; Pabón-Peña C; O'Brien S; Formosa R; Happe S
    Methods; 2010 Apr; 50(4):S15-8. PubMed ID: 20215015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloneless genomic DNA analysis: an efficient and simple methods for de novo genomic sequencing projects and gap filling.
    Nguyen G; Bukanov N; Oshimura M; Smith CL
    Biomol Eng; 2005 Feb; 21(6):135-44. PubMed ID: 15748687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of microsatellites from an extinct moa species using high-throughput (454) sequence data.
    Allentoft M; Schuster SC; Holdaway R; Hale M; McLay E; Oskam C; Gilbert MT; Spencer P; Willerslev E; Bunce M
    Biotechniques; 2009 Mar; 46(3):195-200. PubMed ID: 19317662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted high throughput sequencing of a cancer-related exome subset by specific sequence capture with a fully automated microarray platform.
    Summerer D; Schracke N; Wu H; Cheng Y; Bau S; Stähler CF; Stähler PF; Beier M
    Genomics; 2010 Apr; 95(4):241-6. PubMed ID: 20138981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enabling technologies of genomic-scale sequence enrichment for targeted high-throughput sequencing.
    Summerer D
    Genomics; 2009 Dec; 94(6):363-8. PubMed ID: 19720138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.